- •1.Случайные события и действия над ними.
- •2. Определение вероятности и ее свойства.
- •3. Элементы комбинаторики: правила умножения и сложения, размещение, перестановка, сочетание.
- •4.Условные вероятности.
- •5. Вероятности произведения и сумм событий.
- •6. Полная вероятность.
- •7. Формула Байеса
- •10. Случайные величины. Закон распределения случайной величины.
- •10. Случайные величины. Закон распределения случайной величины.
- •11В. Функция распределения и ее свойств
- •12В.Плотность распределения и ее свойства
- •13В.Числовые характеристики случайных величин (мат.Ожидание, дисперсия, мода, медиана)
- •14В.Биноминальный закон распределения дсв
- •15В.Распределение Пуассона дсв
- •16В. Геометрическое распределение дсв
- •17В. Равномерный закон распределения нсв
- •18В. Показательный (экспоненциальный) з.Р. Нсв
- •19В.Нормальный закон распределения (Гаусса) нсв
- •20В.Двумерная св и функция ее распределения
- •21. Плотность распределения двумерной с.В.
- •22.Зависимость и независимость двух случайных величин
- •23. Условные законы распределения двух с.В.
- •24.Цели и задачи математической статистики.
- •25. Основы выборочного метода
- •26. Вариационные и статистические ряды.
- •28.Числовые характеристики статистического распределения.
- •29. Оценка неизвестных параметров. Свойства статистических оценок.
- •30.Точечные оценки математического ожидания и дисперсии.
- •31В.Методы нахождения точечных оценок. Метод моментов
- •32В. Методы нахождения точечных оценок. Метод наименьших квадратов
- •33В. Методы нахождения точечных оценок. Метод максимального правдоподобия
- •34В.Интервальное оценивание параметров
- •36В. Доверительный интервал для мат ожидания при неизвестной дисперсии
- •37В.Проверка стат. Гипотез о законе распределения
- •38В.Критерий Пирсона
- •39В.Дисперсионный однофакторный анализ
- •40В.Регрессионный анализ
14В.Биноминальный закон распределения дсв
Этот закон является наиболее распространённым для ДСВ. ДСВ имеет биноминальное распределение если:
(сложение вероятностей)
Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна. Вероятности pi вычисляют по формуле Бернулли
X=m |
0 |
1 |
2 |
Pm |
|
|
|
Для биномиального распределения: математическое ожидание M(X) = np, дисперсия D(X) = npq, мода np-q ≤ Mo ≤ np+p, коэффициент асимметрии As = (q - p)/√npq, коэффициент эксцесса Ex = (1 - 6pq)/npq В пределе при n→∞ биномиальное распределение по своим значениям приближается к нормальному с параметрами a=np и σ=√npq В пределе при n→∞ и при p→0 биномиальное распределение превращается в распределение Пуассона с параметром λ=np.
15В.Распределение Пуассона дсв
Пусть имеется некоторая последовательность событий, наступающих в случайные моменты времени (будем называть это потоком событий). Интенсивность потока (среднее число событий, появляющихся в единицу времени) равна λ. Пусть этот поток событий - простейший (пуассоновский), т.е. обладает тремя свойствами: 1) вероятность появления k событий за определённый промежуток времени зависит только от длины этого промежутка, но не от точки отсчёта, другими словами, интенсивность потока есть постоянная величина (свойство стационарности); 2) вероятность появления k событий в любом промежутке времени не зависит от того, появлялись события в прошлом или нет (свойство «отсутствия последействия»); 3) появление более одного события за малый промежуток времени практически невозможно (свойство ординарности). Вероятность того, что за промежуток времени t событие произойдёт k раз, равна
ДСВ
имеет распределение Пуассона, если ее
возможные значения – 0,1,2…m,
а
,
когда n
,
Р
,
np
,
MX=DX=a
16В. Геометрическое распределение дсв
ДСВ имеет геометрическое распределение, если его значения 0,1,2…
Pm=P(X=m)=
p
Производится серия испытаний. Случайная величина - количество испытаний до появления первого успеха (например, бросание мяча в корзину до первого попадания). Закон распределения имеет вид:
Если количество испытаний не ограничено, т.е. если случайная величинв может принимать значения 1, 2, ..., ∞, то математическое ожидание и дисперсию геометрического распределения можно найти по формулам M(X) = 1/p, D(X) = q/p2.
17В. Равномерный закон распределения нсв
Непрерывная СВ имеет равномерное распределение вероятностей на отрезке ав.
; c=
; F(x) =
MX=
;
DX=
К равномерному распределению относится время ожидания транспорта.
Дискретная случайная величина Х имеет равномерное распределение, если она принимает целочисленное значение (1,2,3…) с вероятностью:
Рm=
;
MX=
;
DX=
