
- •1.Случайные события и действия над ними.
- •2. Определение вероятности и ее свойства.
- •3. Элементы комбинаторики: правила умножения и сложения, размещение, перестановка, сочетание.
- •4.Условные вероятности.
- •5. Вероятности произведения и сумм событий.
- •6. Полная вероятность.
- •7. Формула Байеса
- •10. Случайные величины. Закон распределения случайной величины.
- •10. Случайные величины. Закон распределения случайной величины.
- •11В. Функция распределения и ее свойств
- •12В.Плотность распределения и ее свойства
- •13В.Числовые характеристики случайных величин (мат.Ожидание, дисперсия, мода, медиана)
- •14В.Биноминальный закон распределения дсв
- •15В.Распределение Пуассона дсв
- •16В. Геометрическое распределение дсв
- •17В. Равномерный закон распределения нсв
- •18В. Показательный (экспоненциальный) з.Р. Нсв
- •19В.Нормальный закон распределения (Гаусса) нсв
- •20В.Двумерная св и функция ее распределения
- •21. Плотность распределения двумерной с.В.
- •22.Зависимость и независимость двух случайных величин
- •23. Условные законы распределения двух с.В.
- •24.Цели и задачи математической статистики.
- •25. Основы выборочного метода
- •26. Вариационные и статистические ряды.
- •28.Числовые характеристики статистического распределения.
- •29. Оценка неизвестных параметров. Свойства статистических оценок.
- •30.Точечные оценки математического ожидания и дисперсии.
- •31В.Методы нахождения точечных оценок. Метод моментов
- •32В. Методы нахождения точечных оценок. Метод наименьших квадратов
- •33В. Методы нахождения точечных оценок. Метод максимального правдоподобия
- •34В.Интервальное оценивание параметров
- •36В. Доверительный интервал для мат ожидания при неизвестной дисперсии
- •37В.Проверка стат. Гипотез о законе распределения
- •38В.Критерий Пирсона
- •39В.Дисперсионный однофакторный анализ
- •40В.Регрессионный анализ
29. Оценка неизвестных параметров. Свойства статистических оценок.
Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистическая оценка неизвестного параметра генеральной совокупности одним числом называется точечной. Рассмотрим следующие точечные оценки: смещенные и несмещенные, эффективные и состоятельные.
Для
того чтобы статистические оценки давали
хорошие приближения оцениваемых
параметров, они должны удовлетворять
определенным требованиям. Укажем эти
требования. Пусть
есть статистическая оценка неизвестного
параметра Q
теоретического распределения. Допустим,
что по выборке объема n
найдена оценка
1.
Повторим опыт, т. е. извлечем из генеральной
совокупности другую выборку того же
объема и по ее данным найдем оценку
и т. д. Получим числа
,
…которые будут различаться. Таким
образом
,
оценку можно рассматривать как случайную
величину, а числа
— как возможные ее значения.
Если
оценка
дает приближенное значение Q
с избытком, то найденное по данным
выборок число
будет больше истинного значения Q
. Следовательно, и математическое
ожидание
(среднее значение) случайной величины
будет превышать Q
, то есть
. Если дает приближенное значение с
недостатком, то
.
Использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим ошибкам. Поэтому нужно потребовать, чтобы математическое ожидание оценки было равно оцениваемому параметру. Соблюдение требования устраняет систематические ошибки.
Несмещенной
называют статистическую оценку
, математическое ожидание которой равно
оцениваемому параметру Q,
то есть .
Смещенной называют статистическую оценку , математическое ожидание которой не равно оцениваемому параметру.
Однако ошибочно считать, что несмещенная оценка всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия величины может быть значительной. В этом случае найденная по данным одной выборки оценка, например , может оказаться удаленной от своего среднего значения , а значит, и от самого оцениваемого параметра Q. Приняв в качестве приближенного значения Q , мы допустили бы ошибку. Если потребовать, чтобы дисперсия величины была малой, то возможность допустить ошибку будет исключена. Поэтому к статистической оценке предъявляются требования эффективности.
Эффективной называют статистическую оценку, которая (при заданном объеме выборки ) имеет наименьшую возможную дисперсию. При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности.
30.Точечные оценки математического ожидания и дисперсии.
Задана
случайная величина Х: х1, х2, …, хn, так
как М(Х) не найти, то для математического
ожидания случайной величины Х естественно
предложить среднее арифметическое
По методу произведений
Это
и означает, что оценка
несмещенная.
Если исследуемая случайная величина Х имеет конечную дисперсию, то эта оценка будет состоятельной, так как
Точечная оценка для дисперсии
Так как дисперсия определяется через математическое ожидание, а для математического ожидания оценка уже выбрана, то для дисперсии естественно предложить оценку:
что
соответствует записи дисперсии в виде
оценка дисперсии состоятельна и не является несмещенной.
Для получения несмещенной оценки введем поправку и полученную оценку обозначим через S2
Оценка
S2 является состоятельной, так как
сходится
по вероятности к М(Х2), а
– к М(Х).