
- •1.Математика як наука і навчальний предмет. Історія розвитку математики. Роль математичних знань, умінь і навичок.
- •2.Математичні поняття і математичні речення.Об‘єм і зміст поняття.
- •3.Означення та їх структура. Вимоги до означень.
- •4 .Висловлюванні форми. Висловлення із словами "всі", "деякі" (квантори).
- •6. Відношення слідування і рівносильності між реченнями. Необхідні та достатні умови.
- •7.Структура та види теорем.
- •8.Дедуктивні міркування. Найпростіші схеми дедуктивних міркувань.
- •9.Неповна індукція. Способи доведення істинності висловлень.
- •11. Відношення між множинами. Круги Ейлера
- •16. Поняття розбиття множин на класи
- •17. Декартів добуток. Кортеж. Число елементів декартового добутку.
- •18. Зображення декартового добутку двох числових множин на координатній площині
- •19. Поняття відношення. Властивості відношень. Способи задання відношень
- •20. Відношення еквівалентності
- •21. Відношення порядку
- •22. Поняття відповідності. Відповідність обернена даній.
- •23. Взаємнооднозначні відповідності. Рівнопотужні площини.
- •24. Натуральні числа та їх властивості. Число нуль. Множина цілих невід`ємних чисел. Порядкові і кількісні натуральні числа. Лічба.
- •25. Теоретико-множинний зміст кількісного натурального числа і нуля.
- •26. Додавання цілих невід`ємних чисел. Теорема про існування і єдність суми.
- •33. Ділення цілих невід'ємних чисел. Означення ділення через теоретико-множинний зміст та через добуток.
- •34. Теорема про існування частки та її єдність. Теорема про неможливість ділення на нуль.
- •3. Існування частки, її єдиність
- •35. Правила ділення суми та різниці на число.
- •1. Правило ділення суми на число.
- •38. Позиційна і непозиційна система числення. Запис чисел в десятковій системі числення. Запис чисел в різних позиційних системах числення, відмінних від десяткової.
- •39. Додавання багатоцифрових чисел в десятковій системі числення. Алгоритм додавання багатоцифрових чисел.
- •40. Віднімання багатоцифрових чисел в десятковій системі числення. Алгоритм віднімання багатоцифрових чисел.
- •41. Множення багатоцифрових чисел в десятковій системі числення. Алгоритм множення багатоцифрових чисел.
- •42. Ділення багатоцифрових чисел в десятковій системі числення. Алгоритм ділення багатоцифрових чисел.
- •43. Поняття текстової задачі. Способи розв’язування текстових задач.
- •47 Алгебраїчний спосіб
- •55. Нсд. Його властивості та способи знаходження.
- •56. Нск Його властивості та способи знаходження
- •57. Алгоритм Евкліда
- •58. Поняття дробу. Поняття додатного раціонального числа. Рівні дроби.
- •59. Основна властивість дробу. Зведення до спільного знаменника. Скорочення.
- •60. Додавання і віднімання додатних раціональних чисел. Закони додавання.
- •61. Множення та ділення додатних раціональних чисел. Закони множення.
- •62. Впорядкованість множин додатних раціональних чисел.
- •63. 64 Запис додатних раціональних чисел у вигляді десяткового дробу. Нескінченні десяткові періодичні дроби.
- •65. Поняття про додатні ірраціональні числа
- •66.Поняття величини.Однорідні величини та величини різного роду.Властивості однорідних величин.
- •67.Вимірювання величин.Скалярні і векторні величини.Властивості скалярних величин.
- •68. Довжина відрізка,її вимірювання та властивості.
- •69. Площа фігури,її вимірювання та властивості.
- •70. Рівновеликі фігури.Вимірювання площі за допомогою палетки.
- •71.Маса тіла,її вимірювання та властивості.
- •72.Проміжки часу.Їх вимірювання та властивості.
- •73.Об’єм тіла,його вимірювання та властивості.
- •74.Залежності між величинами.
- •75.Числові вирази і вирази із змінними.Область визначення виразу.
- •76.Числові рівності і нерівності,їх властивості.
- •77.Тотожність. Тотожні перетворення виразів.
- •78.Рівняння з однією змінною: означення, корінь рівняння, що значить розв’язати рівнянні.
- •79.Рівносильні рівняння. Теореми про рівносильні рівняння.
- •80. Нерівність з однією змінною: означення, розв’язок нерівності, що означає розв’язати нерівність.
- •81. Рівносильні нерівності. Теореми про рівносильні нерівності.
- •82.Функція.Поняття функції. Область визначення функції. Область означення функції.
- •83. Графік функції. Зростаюча, спадна функція, приклад.
- •84. Лінійна функція, її графік, її властивості.
- •85.Прямо пропорційна функція, її графік і властивості.
- •86.Обернено пропорційна функція, її графік і властивості.
72.Проміжки часу.Їх вимірювання та властивості.
В звичайному житті час- це те,що віддаляє одну подію від іншої.В математиці і фізиці час розгляд. як величину ,бо проміжки часу мають властивості,схожими на властив. довж. площі,маси. Проміжки часу можна порівнювати : На 1 і той же шлях пішоход затратить більше часу,ніж велосипедист. Проміжки часу можна складати :лекція -2 уроки в школі.
Проміжки часу можна віднімати,множити на додатки-дійсне число.
Проміжки часу вимірюються.Але проміжки вимірювання часу відрізняється від вимірювання довжини.Проміжки часу прийм. за одиницю,може бути викор. лише 1 раз.Тому одиниця часу має бути регул. повтор. процес. Поряд із секундою викор. :хв,рік,доба ,тижд.,місяць.Деякі взяті з природи,а деякі -створені людиною.
73.Об’єм тіла,його вимірювання та властивості.
Об'є́м — місткість геометричного тіла, тобто частини простору, обмеженої однією або декількома замкнутими поверхнями. Місткість або ємкість виражається числом кубічних одиниць, що поміщаються в об'ємі. Прийняті одиниці вимірювання — в СІ і похідних від неї — кубічний метр, кубічний сантиметр, літр (кубічний дециметр) і т. д. Позасистемні — галон, барель, бушель.
Об'єм тіла прямокутної форми визначають, перемноживши значення його довжини, ширини і висоти. Вимірюють об'єм тіла в метрах кубічних (м3) або літрах (л) чи мілілітрах (мл); 1 м3 = 1000 л, 1 л = 1000 мл. Об'єм тіла можна також визначити, зануривши його у воду. Він дорівнюватиме об'єму витісненої тілом води.
Теорія вимірювання об’ємів ґрунтується на аксіомах, подібних аксіомам площі, та на поняттях рівновеликості і рівноскладеності просторових фігур.
З геометричної точки зору: кожному многограннику можна поставити у відповідність додатну скалярну величину, що називається об’ємом так, що:
* 1 рівні многогранники мають рівні об’єми
*2 об’єм многогранника, що є об’єднанням двох многогранників, які не мають внутрішніх спільних точок, дорівнює сумі об’ємів цих многогранників
*3 числове значення об’єму куба з довжиною ребра, що дорівнює одиниці довжини е, дорівнює одиниці об’єму е3.
З фізичної точки зору об’єм – це здатність тіла займати якийсь простір.
Для величини об’єму виконуються всі вище зазначені властивості величин об’єми можна додавати, віднімати і в результаті отримувати об’єм, можна множити на число, ділити на число і ділити на об’єм.
Міжнародна система одиниць для вимірювання об’ємів пропонує такі одиниці: кубічний метр м3, кубічний дециметр дм3, кубічний сантиметр см3, кубічний міліметр мм3, літр л, гектолітр гл, мілілітр мл. В цій системі літр розглядається як особлива назва кубічного дециметра, тобто 1 л = 1 дм3.
За Програмою початкової школи з математики у 1 класі розв’язують задачі на обчислення об’ємів рідини у літрах.
74.Залежності між величинами.
Виміри в реальному світі не здійснюються незалежно один від одного. Залежність між величинами багатозначна.
1)швидкість, час, відстань;
2)вартість товару, кількість товару і ціна товару.
3)об‘єм роботи, час роботи і продуктивність праці.
4)кількість тканини, кількість виробів і витрати на один виріб.
способи задання функціональної залежності між величинами:
- за допомогою таблиці (табличний),
- за допомогою формули (аналітичний),
- описати словами (словесний),
- за допомогою графіка (графічний).
На координатній площині можна наочно зобразити залежність між різними величинами, наприклад, відстані від часу, температури від часу тощо. Значення однієї величини зображуються на осі абсцис, другої – на осі ординат, а залежність між ними – точкою з відповідними координатами.
Неперервна лінія, що з’єднує ці точки, називається графіком залежності величин. За графіком можна знаходити відповідні значення величин, аналізувати їх зміни.
В багатьох задачах потрібно встановити залежність випадкової величини Y від однієї чи декількох інших величин. Залежності між величинами можна поділити на функціональні і статистичні. В природничих, технічних науках здебільшого зустрічаються функціональні залежності, при яких кожному значенню аргументу х за певним законом відповідає зазвичай одне значення функції y.
Строга функціональна залежність здійснюється рідко, так як обидві величини х та y, чи одна з них підпадає під дію випадкових впливів (факторів), причому деякі з них можуть бути спільними для обох величин х та y.
Між змінними, що характеризують економічні величини, здебільшого існують залежності, які проявляються в тому, що одна з них реагує на зміну іншої зміною свого закону розподілу.
Статистичною називають залежність, при якій зміна однієї з величин веде до зміни розподілу іншої, зокрема кореляційним називається зв’язок між статистичними змінними Х і Y, за якими при зміні ознаки Х змінюється середнє значення ознаки Y. Причому при кореляційній залежності одному значенню незалежної змінної Х відповідає не одна, а декілька значень залежної змінної Y. Наведений приклад показує, що середня врожайність є функцією від кількості внесеного добрива, тобто Y зв’язаний з Х кореляційною залежністю.
Отже, дві випадкові величини X і Y не є незалежними, то вони називаються залежними випадковими величинами. При цьому залежність між величинами Х і Y не є, взагалі кажучи, функціональною і носить ймовірносний (стохастичний) характер. Така ймовірність вивчається методами теорії ймовірності і математичної статистики. Вивченню статистичної залежності випадкових величин і присвячений цей розділ.