
- •1.Математика як наука і навчальний предмет. Історія розвитку математики. Роль математичних знань, умінь і навичок.
- •2.Математичні поняття і математичні речення.Об‘єм і зміст поняття.
- •3.Означення та їх структура. Вимоги до означень.
- •4 .Висловлюванні форми. Висловлення із словами "всі", "деякі" (квантори).
- •6. Відношення слідування і рівносильності між реченнями. Необхідні та достатні умови.
- •7.Структура та види теорем.
- •8.Дедуктивні міркування. Найпростіші схеми дедуктивних міркувань.
- •9.Неповна індукція. Способи доведення істинності висловлень.
- •11. Відношення між множинами. Круги Ейлера
- •16. Поняття розбиття множин на класи
- •17. Декартів добуток. Кортеж. Число елементів декартового добутку.
- •18. Зображення декартового добутку двох числових множин на координатній площині
- •19. Поняття відношення. Властивості відношень. Способи задання відношень
- •20. Відношення еквівалентності
- •21. Відношення порядку
- •22. Поняття відповідності. Відповідність обернена даній.
- •23. Взаємнооднозначні відповідності. Рівнопотужні площини.
- •24. Натуральні числа та їх властивості. Число нуль. Множина цілих невід`ємних чисел. Порядкові і кількісні натуральні числа. Лічба.
- •25. Теоретико-множинний зміст кількісного натурального числа і нуля.
- •26. Додавання цілих невід`ємних чисел. Теорема про існування і єдність суми.
- •33. Ділення цілих невід'ємних чисел. Означення ділення через теоретико-множинний зміст та через добуток.
- •34. Теорема про існування частки та її єдність. Теорема про неможливість ділення на нуль.
- •3. Існування частки, її єдиність
- •35. Правила ділення суми та різниці на число.
- •1. Правило ділення суми на число.
- •38. Позиційна і непозиційна система числення. Запис чисел в десятковій системі числення. Запис чисел в різних позиційних системах числення, відмінних від десяткової.
- •39. Додавання багатоцифрових чисел в десятковій системі числення. Алгоритм додавання багатоцифрових чисел.
- •40. Віднімання багатоцифрових чисел в десятковій системі числення. Алгоритм віднімання багатоцифрових чисел.
- •41. Множення багатоцифрових чисел в десятковій системі числення. Алгоритм множення багатоцифрових чисел.
- •42. Ділення багатоцифрових чисел в десятковій системі числення. Алгоритм ділення багатоцифрових чисел.
- •43. Поняття текстової задачі. Способи розв’язування текстових задач.
- •47 Алгебраїчний спосіб
- •55. Нсд. Його властивості та способи знаходження.
- •56. Нск Його властивості та способи знаходження
- •57. Алгоритм Евкліда
- •58. Поняття дробу. Поняття додатного раціонального числа. Рівні дроби.
- •59. Основна властивість дробу. Зведення до спільного знаменника. Скорочення.
- •60. Додавання і віднімання додатних раціональних чисел. Закони додавання.
- •61. Множення та ділення додатних раціональних чисел. Закони множення.
- •62. Впорядкованість множин додатних раціональних чисел.
- •63. 64 Запис додатних раціональних чисел у вигляді десяткового дробу. Нескінченні десяткові періодичні дроби.
- •65. Поняття про додатні ірраціональні числа
- •66.Поняття величини.Однорідні величини та величини різного роду.Властивості однорідних величин.
- •67.Вимірювання величин.Скалярні і векторні величини.Властивості скалярних величин.
- •68. Довжина відрізка,її вимірювання та властивості.
- •69. Площа фігури,її вимірювання та властивості.
- •70. Рівновеликі фігури.Вимірювання площі за допомогою палетки.
- •71.Маса тіла,її вимірювання та властивості.
- •72.Проміжки часу.Їх вимірювання та властивості.
- •73.Об’єм тіла,його вимірювання та властивості.
- •74.Залежності між величинами.
- •75.Числові вирази і вирази із змінними.Область визначення виразу.
- •76.Числові рівності і нерівності,їх властивості.
- •77.Тотожність. Тотожні перетворення виразів.
- •78.Рівняння з однією змінною: означення, корінь рівняння, що значить розв’язати рівнянні.
- •79.Рівносильні рівняння. Теореми про рівносильні рівняння.
- •80. Нерівність з однією змінною: означення, розв’язок нерівності, що означає розв’язати нерівність.
- •81. Рівносильні нерівності. Теореми про рівносильні нерівності.
- •82.Функція.Поняття функції. Область визначення функції. Область означення функції.
- •83. Графік функції. Зростаюча, спадна функція, приклад.
- •84. Лінійна функція, її графік, її властивості.
- •85.Прямо пропорційна функція, її графік і властивості.
- •86.Обернено пропорційна функція, її графік і властивості.
38. Позиційна і непозиційна система числення. Запис чисел в десятковій системі числення. Запис чисел в різних позиційних системах числення, відмінних від десяткової.
Ідея нескінченності натурального ряду чисел освоювалось дуже повільно через відсутність протягом тривалого історичного періоду зручної системи числення. Перші системи числення були дуже недосконалими: для зображення кожного числа використовували окремий знак – ієрогліф. Пізніше ієрогліфи стали використовувати лише для позначення так званих вузлових чисел, решту чисел зображали за допомогою їх за принципом додавання або віднімання.
Зміст стародавньої єгипетської ієрогліфічної системи можна побачити у таблиці
I |
|
|
|
|
1 |
10 |
100 |
1000 |
10000 |
Стародавні єгиптяни лічили десятками. Але спеціальні знаки у них були лише для розрядів: одиниць, десятків, сотень і т. д. Числа від 1 до 10 записувались за допомогою паличок.
Наприклад, число 122 мало вид ς ∩∩I I .
У римський системі числення записували вузлові числа так: 1 - I, 5 – V, 10 – Х, 50 – L, 100 – C, 500 – D, 1000 – M. Решту чисел записували за принципом додавання або віднімання.
Наприклад, 256 – CCLVI, 399 – CCCXCIX.
Частково використовували і принцип множення: число 5 зображували символом руки, а 10 –як дві п’ятірки, тільки одна перевернута. Число 100 зображували буквою С, або (centum – сто), а 50 –L, як половину 100 (нижню половину).
Римською нумерацією користуємося і тепер. Ця система є непозиційною.
Непозиційними були також алфавітні системи: давньогрецька і старослов’янська. В цих системах перші 9 букв означали одиниці, наступні 9 – десятки, ще наступні – сотні.
У слов’янській нумерації було два способи лічби великих чисел: «мале словенське числення» і «велике словенське числення». У малому численні: 104 – тьма, 105 – легіон, 106 – леодр. У великому: тьма (@) – 106, легіон – 1012 – тьма тем, леодр – легіон легіонів – 1024, леодр леодрів – 1048 – ворон.
Перша позиційна система числення виникла понад 2000 років до н.е. в стародавньому Вавилоні. Це була шістдесяткова позиційна нумерація. Проте принцип позиційного значення цифр тут ще не використовувався скрізь. Для запису чисел використовували положення клину : ▼- 1 і 60, ◄ - 10. Інші числа зображувались за допомогою цих знаків і дій додавання.
Сучасна позиційна система числення була винайдена в Індії у V-VI ст. Через арабів вона поширилася в IX ст. в Середню Азію, а пізніше – і в Західну Європу. Великим досягненням індійської математики було введення нуля для позначення відсутності одиниць розряду в числі. Після цього десяткова система числення стала повністю оформленою. Запровадження десяткової системи числення на Русі було зупинено монгольським ігом. Тільки у XVIII ст. індійська система числення витіснила слов’янську нумерацію.
У сучасному житті використовують також інші системи числення. В астрономії з давніх-давен застосовується шістдесяткова система числення. Основою цієї системи є число 60. Так, 60сек = 1 мінута, або 60// = 1/, 60/ = 1° тощо.
Взагалі, основою числення може бути будь-яке натуральне число р ≥2. Для запису числа в такій системі числення використовується р символів: 0,1, ..., р-1.
Означення: Записом цілого невід’ємного числа х у р-й системі числення називається його подання у вигляді х = аnpn + … + a1p + a0, де an, …, a1, a0 набувають значення 0, 1, ..., р-1, аn ≠ 0 .
Числа 1, p, p2, … , pn називають розрядними одиницями 1-го, 2-го, ... , (n+1)-го розрядів.
Алгоритми переведення чисел з однієї позиційної системи числення в іншу
1. Для переведення чисел із системи числення з основою p в систему числення з основою q, використовуючи арифметику нової системи числення з основою q, потрібно записати коефіцієнти розкладу, основи степенів і показники степенів у системі з основою q і виконати всі дії в цій самій системі. Очевидно, що це правило зручне при переведенні до десяткової системи числення.
Наприклад:
з шістнадцяткової в десяткову:
92C816=9*10163+2*10162+C*10161+8*10160= 9*16103+2*16102+12*16101+8*16100=37576
з вісімкової в десяткову:
7358=7*1082+3*1081+5*1080= 7*8102+3*8101+5*8100=47710
з двійкової в десяткову:
1101001012=1*1028+1*1027+ 0*1026+1*1025+0*1024+0*1023+ 1*1022+0*1021+1*1020= 1*2108+1*2107+0*2106+1*2105+ 0*2104+0*2103+1*2102+0*2101+ 1*2100=42110
2. Для переведення чисел із системи числення з основою p в систему числення з основою q з використанням арифметики старої системи числення з основою p потрібно:
для переведення цілої частини:
послідовно число, записане в системі основою p ділити на основу нової системи числення, виділяючи остачі. Останні записані у зворотному порядку, будуть утворювати число в новій системі числення;
для переведення дробової частини:
послідовно дробову частину множити на основу нової системи числення, виділяючи цілі частини, які й будуть утворювати запис дробової частини числа в новій системі числення.
Цим самим правилом зручно користуватися в разі переведення з десяткової системи числення, тому що її арифметика для нас звичніша.
Приклади: 999,3510=1111100111,010112
для цілої частини: