
- •Билет №1 взаимодействие тел. Первый закон ньютона. Инерциальные системы отсчета
- •Билет №2. Сила. Масса. Второй закон ньютона.
- •Билет №3. Закон всемирного тяготения. Сила тяжести. Вес тела.
- •Билет №4. Третий закон ньютона. Принцип относительности галилея.
- •Билет №5. Импульс. Закон сохранения импульса.
- •Билет №6. Упругие деформации. Закон гука.
- •Билет №7. Взаимодействие точечных зарядов. Закон кулона.
- •Билет№8. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии.
- •Билет №9. Действие магнитоного поля на проводник с током. Закон ампера.
- •Билет №10. Электрический заряд. Элементарный заряд. Закон сохранения электрического заряда.
- •Билет №11. Колебательный контур. Свободные электромагнтные колебания в контуре. Формула томсона.
- •Билет №12. Опыты резерфорда. Ядерная модель атома.
- •Билет №13. Магнитный поток. Явление электромагнитной индукции.
- •Билет №14. Квантовые постулаты бора. Излучение и поглощение света атомом.
- •Билет №15. Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Плазма.
- •Билет №16. Идеальный газ. Изотермический, изобарный и изохорный процесы в идеальном газе.
- •Билет №17. Интерференция света.
- •Билет №18. Внутренняя энергия. Количество теплоты. Работа в термодинамике. Первое начало термодинамики.
- •Билет №20. Принцип действия тепловых машин. Тепловые двигатели. Коэффициент полезного действия тепловых двигателей.
- •Билет №21. Идеальный газ. Основное уравнение молекуларно-кинетческой теории идеального газа.
- •Билет №22. Радиоактивность. Закон радиоактивного распада.
- •Билет №23. Электрический ток в электролитах. Законы электролиза.
- •Билет №24. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников.
- •Билет №25. Ядерные реакции. Цепные ядерные реакции. Ядерный реактор.
- •Билет №27 строение и свойства жидкостей. Поверхностное натяжение.
Билет №20. Принцип действия тепловых машин. Тепловые двигатели. Коэффициент полезного действия тепловых двигателей.
Тепловой двигатель – устройство, преобразующее внутреннюю энергию сгоревшего топлива в механическую энергию. Виды тепловых двигателей: 1) двигатели внутреннего сгорания: а) дизельные, б) карбюраторные; 2) паровые двигатели; 3) турбины: а) газовые, б) паровые.
Все названые тепловые двигатели имеют разную конструкцию, но состоят из трех основных частей: нагревателя, рабочего тела и холодильника. Нагреватель обеспечивает поступление теплоты в двигатель. Рабочее тело превращает часть полученной теплоты в механическую работу. Холодильник забирает от рабочего тела часть теплоты.
Работа любого теплового двигателя состоит из повторяющихся циклических процессов – циклов. Цикл – это такая последовательность термодинамических процессов, в результате которых система возвращается в начальное состояние.
Коэффициент
полезного действия (КПД)
тепловой машины – это отношение
совершенной двигателем работы к
количеству теплоты, полученному от
нагревателя:
.
Французский
инженер Сади Карно рассмотрел идеальную
тепловую машину
с идеальным газом в качестве рабочего
тела. Он нашел оптимальный идеальный
цикл теплового двигателя, состоящий из
двух изотермических и двух адиабатических
обратимых процессов – цикл
Карно. КПД
такой тепловой машины с нагревателем
при температуре
и холодильником при температуре
:
.
Независимо от конструкции, выбора
рабочего тела и типа процессов в тепловом
двигателе его КПД не может быть больше
КПД теплового двигателя, работающего
по циклу Карно, и имеющего те же, что и
у данного теплового двигателя, температуру
нагревателя и холодильника.
КПД тепловых двигателей невысок, поэтому важнейшей технической задачей является его повышение. Тепловые двигатели имеют два существенных недостатка. Во-первых, в большинстве тепловых двигателей используется органическое топливо, добыча которого быстро истощает ресурсы планеты. Во-вторых, в результате сгорания топлива в окружающую среду выбрасывается огромное количество вредных веществ, что создает значительные экологические проблемы.
Билет №21. Идеальный газ. Основное уравнение молекуларно-кинетческой теории идеального газа.
Для изучения свойств газа вводится физическая модель идеального газа – упрощенная модель реального разреженного газа. Свойства идеального газа: 1) размеры молекул малы по сравнению со средними расстояниями между ними, т.е. молекулы можно рассматривать как материальные точки; 2) силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях между молекулами; 3) молекулы сталкиваются друг с другом как абсолютно упругие шары, движение которых описывается законами механики.
Основное
уравнение МКТ
идеального газа:
.
Это уравнение определяет давление
идеального газа в любой точке его объема.
Учитывая, что
,
основное уравнение МКТ можно записать
в виде:
.
Т.е. давление идеального газа пропорционально
концентрации молекул и средней
кинетической энергии поступательного
движения молекулы.