
- •1.Декартовы координаты. Простейшие задачи аналитической геометрии.
- •2.Полярные координаты. Преобразования прямоугольных координат. Уравнения линий на плоскости.
- •3.Уравнение прямой на плоскости, их частные случаи.
- •4.Угол между прямыми. Условия параллельности, перпендикулярности прямых. Расстояние от точки до прямой.
- •5.Линии второго порядка. Эллипс, гипербола, парабола. Их уравнения, графики и свойства исследование уравнения эллипса.
- •6.Вещественные числа. Множества, действия над множествами.
- •8.Предел числовой последовательности. Понятие ограниченных сверху (снизу) последовательностей.
- •10.Теоремы о пределах функции.
- •11. Два замечательных предела. Таблица эквивалентности.
- •15. Определение производной функции функции. Её геометрический и физический смысл.
- •16. Правила и формула дифференцирования.
- •19. Основные теоремы дифференциального исчисления
- •20. Правило Лопиталя для вычисления пределов функции. Раскрытие неопределённостей вида (0*∞) ; 00 ; ∞0 ; 1∞
- •21) Признаки монотонности функций. Понятие экстремума функций. Теоремы о необходимом и достаточном условиях экстремума функции.
- •22) Определение выпуклости, вогнутости графика функции. Достаточное условие выпуклости, вогнутости графика.
- •23) Точка перегиба графика функции. Теоремы о необходимом , достаточном условии точки перегиба графика.
- •24) Асимптоты графика функции. Общая схема исследования графика функции.
- •25) Понятие первообразной функции. Основные свойства первообразной.
- •26) Понятие неопределенного интеграла, его свойства.
- •27) Общие методы интегрирования.
- •I. Метод непосредственного интегрирования (метод разложения),
- •II. Метод подстановки (интегрирование заменой переменной)
- •III. Метод интегрирования по частям
- •28)Таблица интегралов.
- •29)Интегрирование некоторых тригонометрических функций.
- •30) Интегрирование рациональных дробей.
- •32. Интегрирование иррациональных функций.
- •33.Интегрирование некоторых трансцендентных функций
- •34. Понятие определенного интеграла. Его свойства.
- •35. Понятие несобственного интеграла первого и второго рода.
- •36. Вычисление площадей фигур в прямоугольных координатах.
- •37. Вычисление объемов тел вращения вокруг Ox, Oy, поверхностей тел вращения в прямоугольных координатах.
- •38. Вычисление длины дуги в прямоугольных координатах.
- •39. Понятие числового ряда.Необходимые признак сходимости числового ряда
- •40. Достаточные признаки сходимости ряда.
- •81.Выборочная дисперсия и улучшенная выборочная дисперсия как точечные оценки дисперсии.
- •85.Критерий согласия Пирсона
- •86. Понятия функциональной и корреляционной зависимости. Корреляционный момент.
- •87.Коэффициент корреляции как измеритель линейности стохастической зависимости.
- •83.Доверительный интервал. Точность и надёжность интервальной оценки.
- •84.Понятие статистической гипотезы. Основная и альтернативная гипотезы. Уровень значимости. Ошибки I и II рода. Критерии.
- •82. Относительная частота как точечная оценка вероятности.
- •48.Разложение вектора
- •53. Угол между плоскостями.
- •54.Параметрические уравнения прямой в пространстве
- •47.Линейные операции над векторами
- •Определение
6.Вещественные числа. Множества, действия над множествами.
Вещественные числа или действительные: они все делятся на рациональное число, которое можно представить в виде дроби p/q , где p и q – целые числа.
Иррациональные числа – вещественное число, не являющееся рациональным.
Дробь — это выражение вида р/q, где p — целое число, q - натуральное. Десятичные дроби также можно записать в виде p/q. Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде p/q. Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической. Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Если элемент x принадлежит множеству X, то записывают x ∈ Х (∈ — принадлежит). Если множество А является частью множества В, то записывают А ⊂ В (⊂ — содержится).Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.Операции над множествами Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.Например, если А={1,2,3,4}, B={3,1,4,2} то А=В. Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств. Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6} Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В. Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4} Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В. Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2} Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА). Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6} 7. Постоянные, переменные величины, понятие функции. Примеры элементарных функций. Их графики.
1.Линейная
функция задается уравнением
.
График линейной функций представляет
собой прямую.
Для того, чтобы построить прямую
достаточно знать две точки.
2.График квадратичной функции
(
)
представляет собой параболу.
3.Кубическая
парабола задается функцией
4.График
функции
5.гиперболу
График
показательной функции
График
логарифмической функции
Графики тригонометрических функций
график
функции
график
функции
график
функции
График
котангенса
Пусть X и Y – некоторые числовые множества. Функцией f называется множество упорядоченных пар чисел (x;y), таких что x принадлежит Х, y принадлежит Y, и каждое x входит в одну и только в одну пару этого множества, а каждое y входит по крайне мере в одну пару. При этом говорят, что числу х поставлено в соответствие число y и пишут f=(x) y – называется значением функции f в точке x. Эта переменная называется зависимая, x – независимая переменная (аргумент), множество Х – область определения функции, Y – множество значений функции. Функция, все значения которой между собой равны – постоянная и обозначается f(x)=c или C.