Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по матану.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.84 Mб
Скачать

81.Выборочная дисперсия и улучшенная выборочная дисперсия как точечные оценки дисперсии.

Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения на основе выборки. Различают выборочную дисперсию и несмещённую, или исправленную, выборочные дисперсии.

Точечной оценкой дисперсии является выборочная дисперсия  . Эта оценка является несмещенной и состоятельной. Доверительные границы находятся с помощью величины

d2 = (m 4  - ((n  1) /n ) 4    ) / n ,

где m 4  - выборочный четвертый центральный момент, т.е.

m 4  =  { (X1   ) 4 + (X2   )  4  +… + (X n   ) 4 } / n .

          Нижняя доверительная граница для дисперсии случайной величины имеет вид

 - U(p)d ,где       – выборочная дисперсия,

          U(p) – квантиль нормального распределения порядка (1+р)/2 (как и раньше),

          d – положительный квадратный корень из величины d2, введенной выше.

          Верхняя доверительная граница для дисперсии случайной величины имеет вид  + U(p)d ,

где все составляющие имеют тот же смысл, что и выше.

  Для исправления выборочной дисперсии достаточно умножить ее на дробь

получим исправленную дисперсию S2. Исправленная дисперсия является несмещенной оценкой.

В качестве оценки генеральной дисперсии принимают исправленную дисперсию.

85.Критерий согласия Пирсона

Критерий согласия Пирсона χ2  – один из основных, который можно представить как сумму отношений квадратов расхождений между теоретическими (fТ) и эмпирическими (f) частотами к теоретическим частотам:

  

k–число групп, на которые разбито эмпирическое распределение,  

fi–наблюдаемая частота признака в i-й группе,

fT–теоретическая частота.

Для распределения χ2 составлены таблицы, где указано критическое значение критерия согласия χ2 для выбранного уровня значимости α и степеней свободы df (или ν). Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. Р — статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

α=0,10,  тогда Р=0,90 (в 10 случаях из 100)

α=0,05,  тогда Р=0,95 ( в 5 случаях из 100)

α=0,01,  тогда Р=0,99 (в 1 случае из 100) может быть отвергнута правильная гипотеза

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z.  Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеется три связи. Поэтому при выравнивании покривой нормального распределения число степеней свободы определяется как df =k–3. Для оценки существенности, расчетное значение сравнивается с табличным χ2табл

При полном совпадении теоретического и эмпирического распределений χ2=0, в противном случае χ2>0. Если χ2расч> χ2табл, то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем. В случае, если χ2расч< χ2табл то гипотезу принимаем и с вероятностью Р=(1-α) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно. Следовательно, есть основания утверждать, что эмпирическое распределение подчиняется нормальному распределению. Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N>50), при этом, частота каждой группы должна быть не менее 5.