
- •Действия с корнями.Степень с рациональным и действительным показателем
- •5. Действия с корнями (радикалами).
- •Основное логарифмическое тождество
- •Замена основания логарифма
- •Другие тождества и свойства
- •Значения тригонометрических функций для некоторых углов [править]
- •Значения тригонометрических функций нестандартных углов [править]
- •Тригонометрические формулы Основные тригонометрические тождества
- •Формулы сложения
- •Определение производной функции через предел [править]
- •Общепринятые обозначения производной функции в точке [править]
- •Определение[править]
- •Обозначения[править]
- •Свойства[править]
- •Геометрический смысл[править]
- •Векторное произведение[править]
- •Свойства призмы[править]
- •Свойства[править]
- •Свойства пирамиды[править]
- •Формулы, связанные с пирамидой[править]
- •Свойства усеченной пирамиды:
- •Площадь поверхности и объём усеченной пирамиды
- •Площадь боковой поверхности[править]
- •Площадь полной поверхности[править]
- •Объём цилиндра[править]
- •Свойства [править]
- •Уравнение конуса [править]
- •Свойства [править]
- •Уравнение конуса [править]
- •Количество размещений[править]
- •Размещение с повторениями[править]
- •Количество размещений с повторениями[править]
- •Свойства перестановки
- •Определение Дисперсия
- •Основные сведения Среднее кв Отклонение
Свойства[править]
Параллелепипед симметричен относительно середины его диагонали.
Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
Противолежащие грани параллелепипеда параллельны и равны.
Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Основные формулы[править]
Прямой параллелепипед[править]
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Объём V=Sо*h
Прямоугольный параллелепипед[править]
Основная статья: Прямоугольный параллелепипед
Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Куб[править]
Площадь боковой поверхности S<su
Произвольный параллелепипед[править]
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[1]:215.
ς==
В математическом анализе == В математическом
анализе под n-мерным прямоугольным
параллелепипедом
понимают
множество точек
вида
Свойства пирамиды[править]
Если все боковые ребра равны, то:
около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
боковые ребра образуют с плоскостью основания равные углы.
также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.
Если боковые грани наклонены к плоскости основания под одним углом, то:
в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
высоты боковых граней равны;
площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.
Формулы, связанные с пирамидой[править]
Объём пирамиды может быть вычислен по формуле:
где
— площадь основания
и
—
высота;
Также объём пирамиды может быть вычислен по формуле [7]:
где
—
скрещивающиеся рёбра ,
—
расстояние между
и
,
—
угол между
и
;
Боковая поверхность — это сумма площадей боковых граней:
Полная поверхность — это сумма площади боковой поверхности и площади основания:
Для нахождения боковой поверхности в правильной пирамиде можно использовать формулы:
где
— апофема ,
— периметр основания,
—
число сторон основания,
—
боковое ребро,
—
плоский угол при вершине пирамиды.