Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом Стёпин.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.67 Mб
Скачать
    1. Рпм на основе метаматериала.

Другая возможность снижения отражения ЭМИ от внешней поверхности связана с использованием материалов, в верхних слоях которых создаются периодические, так называемые киральные проводящие структуры, кооперативно взаимодействующие с электромагнитным излучением. Конструкции каждого такого элемента и всего их ансамбля могут быть самыми разнообразными [11]. В этом случае структуры рассчитываются таким образом, чтобы диаграмма направленности распространяющейся энергии была по возможности двумерной и лежала в плоскости отражающего материала (покрытия). При этом для снижения отражения от плоских проводящих элементов, площадь, занимаемая такими структурами, должна быть минимальной. Поскольку такая структура, возбуждаясь от постороннего источника, передает запасенную энергию в окружающее пространство, то аналогом такой структуры может быть передающая сверхнаправленная антенна с большой радиационной добротностью [12]. Подобные радиопоглощающие материалы называются радиопоглощающими поверхностями на основе метаматериала.

Метаматериалы - это композиты, обладающие уникальными электрофизическими, радиофизическими и оптическими свойствами, отсутствующими в природных материалах[13].

Новые свойства метаматериалов обусловлены резонансным взаимодействием электромагнитной волны, распространяющейся в гетерогенной среде, наполненной включениями, имеющими специальную форму, обеспечивающую резонансное возбуждение токов. Резонансное взаимодействие носит непотенциальный характер, что, наряду с интерференционными коллективными процессами, приводит к возникновению новых эффектов. В частности, метаматериалы могут обладать одновременно отрицательными: магнитной проницаемостью и электрической восприимчивостью, вследствие чего возникают электромагнитные волны, у которых фазовая и групповая скорости имеют противоположные направления и в результате возникает отрицательное лучепреломление на границе двух сред. Пример отличия можно увидеть на рисунках 3 и 4.

Рисунок 3 - Преломление электромагнитной волны в классической среде.

Рисунок 4 - Преломление электромагнитной волны.

Полученный материал относительно узкополосный, хотя он обладает свойствами, которыми традиционные поглощающие материалы не обладают. А именно, при низких частотах диэлектрическая и магнитная проницаемости слоя малы и слой становится прозрачным, что является важным для решения ряда задач электромагнитной совместимости.

Радиопоглощающий материал (РПМ) на основе метаматериала (рисунок 5) представляет собой периодическую решетку металлических щелевых разомкнутых резонаторов (SRR – Split Ring Resonator), выполненных на диэлектрической подложке. Основное свойство РПМ на основе метаматериала – поглощение электромагнитных волн (ЭМВ) на частотах плазмонного резонанса.

Рисунок 5 - Пример метаматериала.

Из-за таких проблем, как узкополосность РПМ на основе метаматериала, зависимость коэффициента поглощения от угла падения и поляризации ЭМВ, в настоящее время ведутся интенсивные работы по созданию новых видов широкополосных радиопоглощающих материалов на основе РПМ в интересах совершенствования антенной техники, развития технологий улучшения помехозащищенности радиоэлектронных средств.

Одно из решений данной проблемы – создание двухмерного микроволнового поглотителя на основе метаматериала, электродинамические свойства которого не зависят от поляризации ЭМВ. Пример технического решения приведен в работе [14]. Радиопоглощающий материал выполнен в виде диэлектрика толщиной h = 1 мм. На поверхность диэлектрика наносятся SRR ячейки, представляющие собой 4 симметричных относительно центра RSS, кольца с двумя щелями и с металлической полосой поперек кольца с радиусом 2 мм, обеспечивающего уровень поглощения не ниже 80% при углах падения ЭМВ от 0 до на частоте 9,5 ГГц.

Примером решения задачи увеличения рабочих частот являются работы [15] и [16]. Поляризационно-независимый трёхполосный поглотитель обеспечивающий уровень поглощения 99%, 93% и 95% на частотах 4,06 ГГц, 6,73 ГГц, 9,22 ГГц соответственно, и обеспечивающий уровень поглощения не ниже 90% при углах падения от 0 до 50 градусов. В качестве положки был выбран диэлектрик с h = 0,78 мм и с = 4. Каждая SRR ячейка представляет собой три вложенных прямоугольных кольца с размерами 9,6, 7,3 и 5,5 мм.

Двухполосный поглотитель на основе метаматериала работает на частотах 8,23 ГГц и 9,12 ГГц. Конструктивными особенностями RSS ячейки является пара прямоугольных резонаторов с двумя щелями (ширина щелей 2,5 мм) и с размерами 36 мм х 35 мм каждый. Между резонаторами установлен диод. При выключенном режиме диод обладает большим емкостным сопротивлением из-за чего резонансная частота понижается. При включенном диоде образуется индуктивное сопротивление, которое повышает резонансную частоту. Ячейки нанесены на диэлектрик – FR4 с h = 2 мм и с = 4.4. На обратную сторону диэлектрика нанесён металлический экран[17].