
Аутентификация, целостность и неоспоримость
Помогая сохранить содержание сообщения в тайне, криптография может быть' использована, чтобы дополнительно обеспечить решение следующих задач:
Аутентификация. Получателю сообщения требуется убедиться, что оно исходит от конкретного отправителя. Злоумышленник не может прислать фальшивое сообщение от чьего-либо имени.
Целостность. Получатель сообщения в состоянии проверить, были ли внесены какие-нибудь изменения в полученное сообщение в ходе его передачи. Злоумышленнику не позволено заменить настоящее сообщение на фальшивое.
Неоспоримость. Отправитель сообщения должен быть лишен возможности впоследствии отрицать, что именно он является автором этого сообщения.
Перечисленные задачи часто приходится решать на практике для организации взаимодействия людей при помощи компьютеров и компьютерных сетей. Подобные же задачи возникают и в случае личностного человеческого общения: часто требуется проверить, а действительно ли ваш собеседник тот, за кого он себя выдает, и подлинны ли предъявленные им документы, будь то паспорт, водительское удостоверение или страховой полис. Вот почему в обыденной жизни не обойтись без аутентификации, проверки целостности и доказательства неоспоримости, а значит и без криптографии.
Шифры и ключи
Криптографический алгоритм, также называемый шифром или алгоритмом шифрования, представляет собой математическую функцию, используемую для шифрования и расшифрования. Если быть более точным, таких функций две:
одна применяется для шифрования, а другая — для расшифрования.
Когда надежность криптографического алгоритма обеспечивается за счет сохранения в тайне сути самого алгоритма, такой алгоритм шифрования называется ограниченным. Ограниченные алгоритмы представляют значительный интерес с точки зрения истории криптографии, однако совершенно непригодны при современных требованиях, предъявляемых к шифрованию. Ведь в этом случае каждая группа пользователей, желающих обмениваться секретными сообщениями, должна обзавестись своим оригинальным алгоритмом шифрования. Применение готового оборудования и стандартных программ исключено, поскольку тогда любой сможет приобрести это оборудование и эти программы и ознакомиться с заложенным в них алгоритмом шифрования. Придется разрабатывать собственный криптографический алгоритм, причем делать это надо будет каждый раз, когда кто-то из пользователей группы захочет ее покинуть или когда детали алгоритма случайно станут известны посторонним.
В современной криптографии эти проблемы решаются с помощью использования ключа, который обозначается буквой К (от английского слова key). Ключ должен выбираться среди значений, принадлежащих множеству, которое называется ключевым пространством. И функция шифрования Е, и функция расшифрования D зависят от ключа. Сей факт выражается присутствием К в качестве подстрочного индекса у функций Е и D:
Ек(Р)=С dk(c)=p По-прежнему справедливо следующее тождество:
Ок(Ек(Р))=Р
Некоторые алгоритмы шифрования используют различные ключи для шифрования и расшифрования. Это означает, что ключ шифрования k] отличается от ключа расшифрования Кг. В этом случае справедливы следующие соотношения:
Е^(Р) = С dk,(c) = P Ок,(Ек,(Р)) = Р
Надежность алгоритма шифрования с использованием ключей достигается за счет их надлежащего выбора и последующего хранения в строжайшем секрете. Это означает, что такой алгоритм не требуется держать в тайне. Можно организовать массовое производство криптографических средств, в основу функционирования которых положен данный алгоритм. Знание криптографического алгоритма не позволит злоумышленнику прочесть зашифрованные сообщения, поскольку он не знает секретный ключ, использованный для их зашифрования.
Под криптосистемой понимается алгоритм шифрования, а также множество всевозможных ключей, открытых и шифрованных текстов.