
- •1.Кручение: общая картина деформации: скручивающие и крутящие моменты, эпюра крутящих моментов
- •2.Вывод формулы для определения касат напряжений при кручении стержней круглого поперечного сечения
- •3.Кручение: деформация бруса круглого поперечного сечения; жесткость при кручении; эпюра углов закручивания.
- •4.Нагружения на наклонных площадках при кручении. Характер разрушения материалов.
- •5.Кручение: главные напряжения, расчеты на прочность и жесткость, условие прочности.
- •6. Кручение бруса некруглого поперечного сечения: напряжения, деформации, геометрические характеристики; эпюра касательных напряжений для бруса прямоугольного поперчечного сечения
- •7.Кручение тонкостенного бруса замкнутого и открытого профилей.
- •8.Потенциальная энергия при кручении.
- •9. Статически неопределимые задачи при расчете на кручение
- •10. Плоский поперечный изгиб. Внутренние силы. Напряжения.
- •11.Характер поведения материалов при чистом изгибе. Гипотезы Бернулли.
- •13.Напряжения в наклонной площадке. Главные напряжения при изгибе и их эпюры.
- •16.Методика расчетов на прочность по нормальным напряжениям при изгибе прямых брусьев
- •17. Центр изгиба: понятие и экстремальное определение.
- •18.Понятие о прогибе и угле поворота. Вывод приближенного дифференциального уравнения изогнутой оси.
- •19. Нормальные напряжения при чистом изгибе (вывод формулы, эпюра, энергия упругой деформации.)
- •20.Касательные напряжения при поперечном изгибе(вывод формулы Журавского, эпюра).
- •21.Проверка прочности по касательным и нормальным напряжениям при изгибе.
- •22.Расчет балок на прочность. Балки равного сопротивления изгибу.
- •23.Перемещения сечений при изгибе. Метод начальных параметров.
- •24. Расчет балок на жесткость. Потенциальная энергия деформации.
- •25.Балки разнородной упругости.
- •26.Статически неопределимые балки. Методика раскрытия статической неопределимости.
- •27.Косой изгиб: общие положения, напряжения и положение нейтр лин.
- •28. Определение прогибов при косом изгибе. Понятие об осях большой и малой жёсткости.
- •29.Сложное сопротивление. Совместное действие изгибающих моментов и продольной силы.
- •30.Понятие о внецентренном растяжение и сжатие: общие положения, внутренние силы, напряжения, положение нулевой линии, ядро сечения.
- •31.Вывод формул для определения нормальных напряжений при внецентренном растяжении и сжатии и положения нейтральной линии
- •32.Ядро сечения. Методика построения.
- •33. Одновременное действие кручение и изгиба; кручение с растяжением или сжатием. Расчет по эквивалентным напряжениям.
- •34.Совместное действие крутящих, изгибающих моментов и продольной силы в случае стержней с некруглым поперечным сечением.
- •35.Совместное действие крутящих, изгибающих моментов и продольной силы в случае стержней с круглым поперечным сечением.
- •36.Кривые стержни:основные положения;вычисление изгиб мом, норм и попереч сил; вычисление напряжений; определение положения нейтр слоя.
- •37.Устойчивость сжатых стержней: общие положения, понятие о критической силе, формула эйлера и пределы ее применимости.
- •38.Устойчивость сжатых стержней: гибкость стержня, предельная гибкость, формула Ясинского, расчеты на устойчивость.
- •40.Толстостенные трубы: основные уравнения для осесимметричного тела.
- •41.Толстостенные трубы: расчёт цилиндра нагруженного внутренним давлением, расчёт цилиндра нагруженного внешним давлением, эпюра напряжений.
- •42.Толсостенные трубы: определение перемещений и напряжений.
- •43.Основы расчёта на действие динамических нагрузок: общие положения, приближенный способ расчёта на удар.
- •44. Основы расчёта на действие динамических нагрузок: общие положения, расчет троса при подъеме груза.
- •45.Циклические нагрузки. Усталость материала. Природа усталости материала.
- •46. Прочность при циклических нагрузках: расчёт на усталустную прочность цилиндрической клапанной пружины.
- •47. Прочность при циклич нагрузках: диаграмма усталост прочности, влияние концентрации напряжений, состояния поверхности и размеров детали на усталостную прочность.
- •49 Расчет тонкостенных сосудов
7.Кручение тонкостенного бруса замкнутого и открытого профилей.
В машиностроении широко применяются тонкостенные стержни с замкнутыми (рис. 4.7, а) и открытыми профилями (рис. 4.7, б) поперечных сечений. Поэтому расчеты на кручение таких тонкостенных стержней имеет большое практическое значение.
Характерной геометрической особенностью тонкостенных стержней является то, что их толщина существенно меньше других геометрических размеров. Характер распределения напряжений по толщине тонкостенного стержня открытого профиля близок к равномерному (рис. 4.7, б), а замкнутого профиля меняется по линейному закону, как это показано на рис. 4.7, а. Откуда следует, что напряжения в поперечных сечениях открытого профиля практически не изменятся, если профиль сечения распрямить. Иначе говоря, напряжения в криволинейном открытом профиле будут примерно такими же, как и в прямом.
Обращаясь
к формулам (4.14), (4.16) и при предельном
переходе
,
получим:
;
,
(4.17)
где d - толщина профиля; s - длина контура профиля; l - длина стержня.
В случае, если тонкостенный незамкнутый профиль является составным (рис. 4.8) и не может быть развернут в вытянутый прямоугольник, воспользовавшись почленной аналогией, легко определить выражения напряжений на i-ом произвольном участке:
(4.18)где
MK(i) - доля
крутящ момента, соответствующего i-му
участку:
,где
j - угловое перемещение, единое для
всех участков:
.
(4.19)
Изложенный подход к определению напряжений является приближенным, так как он не позволяет определить напряжения в зонах сопряжения элементов поперечного сечения профиля, которые являются зонами концентрации напряжений.
Далее
рассмотрим брус, имеющий поперечное
сечение в форме замкнутого тонкостенного
профиля (рис. 4.9). Выделим на контуре
элементарный участок длиной ds
и выразим крутящий момент через напряжения
t, выполняя операцию контурного
интегрирования получим:
.
(4.20)
Из условия равновесия сил по оси z выделенного элемента длиной dz (4.9) легко установить, что по контуру сечения произведение t×d является постоянной величиной. С учетом данного обстоятельства, выражение (4.20) примет вид:
,
(4.21)
где
- представляет
собой удвоенной площадь, ограниченную
срединной линией контура сечения.
Из (4.21) наибольшее напряжение определяется по формуле:
.
(4.22)
Для вывода выражения для угла закручивания воспользуемся энергетическими соображениями. Энергия, накопленная в элементарном объеме с размерами d, dz, ds за счет деформаций чистого сдвига, равна:
.
С учетом (4.21), последнее выражение можно представить в виде:
.
С другой стороны, работу внешних сил можно представить в виде:
.
(4.24)
Приравнивая оба выражения из (4.22) и (4.23), получим:
,
(4.25)
Если d является постоянной по контуру, будем иметь:
,
(4.26)
где
s - длина
замкнутого контура.