
- •1.Кручение: общая картина деформации: скручивающие и крутящие моменты, эпюра крутящих моментов
- •2.Вывод формулы для определения касат напряжений при кручении стержней круглого поперечного сечения
- •3.Кручение: деформация бруса круглого поперечного сечения; жесткость при кручении; эпюра углов закручивания.
- •4.Нагружения на наклонных площадках при кручении. Характер разрушения материалов.
- •5.Кручение: главные напряжения, расчеты на прочность и жесткость, условие прочности.
- •6. Кручение бруса некруглого поперечного сечения: напряжения, деформации, геометрические характеристики; эпюра касательных напряжений для бруса прямоугольного поперчечного сечения
- •7.Кручение тонкостенного бруса замкнутого и открытого профилей.
- •8.Потенциальная энергия при кручении.
- •9. Статически неопределимые задачи при расчете на кручение
- •10. Плоский поперечный изгиб. Внутренние силы. Напряжения.
- •11.Характер поведения материалов при чистом изгибе. Гипотезы Бернулли.
- •13.Напряжения в наклонной площадке. Главные напряжения при изгибе и их эпюры.
- •16.Методика расчетов на прочность по нормальным напряжениям при изгибе прямых брусьев
- •17. Центр изгиба: понятие и экстремальное определение.
- •18.Понятие о прогибе и угле поворота. Вывод приближенного дифференциального уравнения изогнутой оси.
- •19. Нормальные напряжения при чистом изгибе (вывод формулы, эпюра, энергия упругой деформации.)
- •20.Касательные напряжения при поперечном изгибе(вывод формулы Журавского, эпюра).
- •21.Проверка прочности по касательным и нормальным напряжениям при изгибе.
- •22.Расчет балок на прочность. Балки равного сопротивления изгибу.
- •23.Перемещения сечений при изгибе. Метод начальных параметров.
- •24. Расчет балок на жесткость. Потенциальная энергия деформации.
- •25.Балки разнородной упругости.
- •26.Статически неопределимые балки. Методика раскрытия статической неопределимости.
- •27.Косой изгиб: общие положения, напряжения и положение нейтр лин.
- •28. Определение прогибов при косом изгибе. Понятие об осях большой и малой жёсткости.
- •29.Сложное сопротивление. Совместное действие изгибающих моментов и продольной силы.
- •30.Понятие о внецентренном растяжение и сжатие: общие положения, внутренние силы, напряжения, положение нулевой линии, ядро сечения.
- •31.Вывод формул для определения нормальных напряжений при внецентренном растяжении и сжатии и положения нейтральной линии
- •32.Ядро сечения. Методика построения.
- •33. Одновременное действие кручение и изгиба; кручение с растяжением или сжатием. Расчет по эквивалентным напряжениям.
- •34.Совместное действие крутящих, изгибающих моментов и продольной силы в случае стержней с некруглым поперечным сечением.
- •35.Совместное действие крутящих, изгибающих моментов и продольной силы в случае стержней с круглым поперечным сечением.
- •36.Кривые стержни:основные положения;вычисление изгиб мом, норм и попереч сил; вычисление напряжений; определение положения нейтр слоя.
- •37.Устойчивость сжатых стержней: общие положения, понятие о критической силе, формула эйлера и пределы ее применимости.
- •38.Устойчивость сжатых стержней: гибкость стержня, предельная гибкость, формула Ясинского, расчеты на устойчивость.
- •40.Толстостенные трубы: основные уравнения для осесимметричного тела.
- •41.Толстостенные трубы: расчёт цилиндра нагруженного внутренним давлением, расчёт цилиндра нагруженного внешним давлением, эпюра напряжений.
- •42.Толсостенные трубы: определение перемещений и напряжений.
- •43.Основы расчёта на действие динамических нагрузок: общие положения, приближенный способ расчёта на удар.
- •44. Основы расчёта на действие динамических нагрузок: общие положения, расчет троса при подъеме груза.
- •45.Циклические нагрузки. Усталость материала. Природа усталости материала.
- •46. Прочность при циклических нагрузках: расчёт на усталустную прочность цилиндрической клапанной пружины.
- •47. Прочность при циклич нагрузках: диаграмма усталост прочности, влияние концентрации напряжений, состояния поверхности и размеров детали на усталостную прочность.
- •49 Расчет тонкостенных сосудов
43.Основы расчёта на действие динамических нагрузок: общие положения, приближенный способ расчёта на удар.
Под динамическими нагрузками , будем понимать нагрузки, которые будут прикладываться с ускорением, или изменяющие законы движения элементов конструкции. Приложение нагрузки с ускорением вызывают возникновений дополнительных усилий в элементах конструкций. Величина которых достаточно велика, и оказывает существенную влияние на несущую способность элементов конструкций.
Основной причиной возникновения дополнительных усилий является действие сил инерции.
Для того, что бы учесть влияние динамических нагрузок, необходимо уметь определять силы инерции. Для решения задач используется принцип До-Ламбера. Суть которого заключается в следующем.
1)Определяем усилия в элементах конструкции по методике статического напряжения.
2)Определяем силы инерции.
3)Складываем алгебраические силы инерции, с силами подстатичского нагружения.
4) Проверяем прочность статического нагружения по методике статического нагружения ,от суммарной нагрузки.
Испытанию на удар подвергаются практически все материалы. При поставках металла ударная вязкость является одной из важнейших характеристик Ме. Она характеризует способность ме сопротивляться хрупкому разрушению ( поглощать энергию удара за счет пластического деформирования) при заданной температуре испытания. Для разных сталей приводится свое значение ударной вязкости. Уд. Вязкость существенно зависит от Т испытания. Это особенно относится к Ме и сплавам с о.ц.к. решеткой, состояние которых изменяется с понижением температуры от вязкого к хрупкому. Испытания показывают, что при понижении Т сначала наблюдается постепенное снижение ударной вязкости, при определенной Т она достигает своего наименьшего значения, которое при дальнейшем понижении т не изменяется.
44. Основы расчёта на действие динамических нагрузок: общие положения, расчет троса при подъеме груза.
Динам. Нагрузки - нагрузки, которые будут прикладываться с ускорением, или изменяющие законы движения элементов конструкции. Приложение нагрузки с ускорением вызывают возникновений дополнительных усилий в элементах конструкций. Величина которых достаточно велика, и оказывает существенную влияние на несущую способность элементов конструкций. Основной причиной возникновения дополнительных усилий является действие сил инерции. Для того, что бы учесть влияние динамических нагрузок, необходимо уметь определять силы инерции. Для решения задач используется принцип До-Ламбера. Суть которого заключается в следующем. 1)Определяем усилия в элементах конструкции по методике статического напряжения. 2)Определяем силы инерции. 3)Складываем алгебраические силы инерции, с силами подстатичского нагружения. 4) Проверяем прочность статич нагружения по методике статич нагружен. от суммарной нагрузки.
45.Циклические нагрузки. Усталость материала. Природа усталости материала.
К динамическим нагрузкам, несмотря на отсутствие значительных инерционных сил, можно отнести периодические многократно повторяющиеся (циклические) нагрузки, действующие на элементы конструкции. Такого рода нагружения характерны для большинства машиностроительных конструкций, таких, как оси, валы, штоки, пружины, шатуны и т. д. Как показывает практика, нагрузки, циклически изменяющиеся во времени по величине или по величине и по знаку, могут привести к разрушению конструкции при напряжениях, существенно меньших, чем предел текучести (или предел прочности). Такое разрушение принято называть «усталостным». Материал как бы «устает » под действием многократных периодических нагрузок. Усталостное разрушение – разрушение материала под действием повторно-переменных напряжений. Усталость материала – постепенное накопление поврежд в материале под действием переменных напряжений, приводящих к образованию трещин в материале и разрушению. Выносливость – способность материала сопротивляться усталостному разрушению.
Физические причины усталостного разрушения материалов достаточно сложны и еще не до конца изучены. Одной из основных причин усталостн разрушения принято считать образование и развитие трещин. Механизм усталостного разрушения во многом связан с неоднородностью реальной структуры материалов (различие размеров, очертаний, ориентации соседних зерен металла; наличие различных включений – шлаков, примесей; дефекты кристаллической решетки, дефекты поверхности материала – царапины, коррозия и т. д.). В связи с указанной неоднородн при перемен напряж на границах отдельных включ и вблизи микроскопич пустот и различных дефектов возникает концентрация напряжений, которая приводит к микропластическим деформациям сдвига некоторых зерен металла (при этом на поверхности зерен могут появляться полосы скольжения) и накоплению сдвигов (которое на некоторых материалах проявляется в виде микроскопических бугорков и впадинок – экструзий и интрузий); затем происходит развитие сдвигов в микротрещины, их рост и слияние; на последнем этапе появляется одна или несколько макротрещин, которая достаточно интенсивно развивается (растет). Края трещины под действием переменной нагрузки притираются друг об друга, и поэтому зона роста трещины отличается гладкой (полированной) поверхностью. По мере роста трещины поперечное сечение детали все больше ослабляется, и, наконец, происходит внезапное хрупкое разрушение детали, при этом зона хрупкого долома имеет грубозернистую кристаллическую структуру (как при хрупком разрушении).