Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
алфавит.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.07 Mб
Скачать

Центр параллельных сил

При сложении двух параллельных сил две параллельные приводятся к одной силе — равнодействующей, линия действия которой направлена параллельно линиям действия сил. Равнодействующая приложена в точке делящей прямую, на расстояния обратно пропорциональные величинам сил.

Поскольку силу можно переносить по линии ее действия, то точка приложения равнодействующей не определена. Если силы повернуть на один и тот же угол и вновь произвести сложение сил, то получим другое направление линии действия равнодействующей. Точка пересечения этих двух линий равнодействующих может рассматриваться как точка приложения равнодействующей, не изменяющая своего положения при повороте всех сил одновременно на один и тот же угол. Такая точка называется центром параллельных сил.

Центр тяжести тела. Методы нахождения центра тяжести тела

Силы притяжения отдельных частиц тела к Земле направлены приблизительно к центру Земли. Так как размеры рассматриваемых тел малы по сравнению с радиусом Земли, то эти силы можно считать параллельными. Равнодействующая этих сил, равная их сумме, есть вес тела, а центр этой системы параллельных сил, в котором приложен вес тела, называется центром тяжести тела.

В твердом теле центр тяжести занимает вполне определенное положение, которое не зависит от положения этого тела в пространстве.

Обозначим силы притяжения отдельных частиц тела к Земле , вес тела , координаты его центра тяжести , а координаты его частиц . Координаты центра тяжести тела можно определить как координаты центра параллельных сил.

Вес однородного тела определяется формулой , где - объем тела, - вес единицы объема, – объем элементарной частицы тела.

Центр тяжести твердого тела, заполняющего некоторый объем, называется центром тяжести этого объема.

Методы нахождения центра тяжести тела:

Метод разбиения – сложная фигура разбивается на совокупность простых фигур, для которых известны положения центра тяжести или легко определяются.

Метод отрицательных площадей – так же, как и в методе разбиения, сложная фигура разбивается на совокупность простых фигур, для которых известны положения центра тяжести или легко определяются, но при наличии отверстий или пустот удобно их представление в виде “отрицательных” областей.

Метод симметрии – при наличии у фигуры оси или плоскости симметрии центр тяжести лежит на этой оси или в этой плоскости. С учетом этого свойства уменьшается количество координат центра тяжести, подлежащих определению. См., например, определение положения центра тяжести кругового сектора.

Метод интегрирования – при наличии у фигуры достаточно простого контура, описываемым известным уравнением (окружность, парабола и т.п.), выбирается элементарная площадка или полоска и выполняется аналитическое интегрирование.

Метод подвешивания – экспериментальный метод, основанный на том, что при подвешивании тела или фигуры за какую-либо произвольную точку центр тяжести находится на одной вертикали с точкой подвеса