Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по алгебре.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
246.66 Кб
Скачать

1.Поле

Опр. 1.1 Пусть Х-непустое мн-во,будем говорить,что на Х задана бинарная алг. Операция,если для х,у Х задан элемент х у

Опр. 1.2 Бинарная операция на мн. Х наз ассоциативной если , если опер. Ассоц,то <X, > наз. подгруппой

Опр. 1.3 Пусть на непустом мн М задана ассоц.опер. ,эл-т наз нейтральным,если если операция обозн. «+» и наз сложением,то тогда эл-т е наз нулевым,если операция обозн « » и на умнож. то нейтральный эл-т обычно наз еденицей,если в полугр. М есть нейтр. эл-т,то М наз моноидом

Опр. 1.4 если в моноиде <M, > для эл-та х ,то эл-т у наз. симметричным эл-ту х;если операция «+»,то эл-т у наз противоположным эл-ту х и обозн у=-х;если операция « »и наз умнож,то тогда у=х-1 наз обратным к х(х )

Опр.1.5 Пусть <M, > монод и каждому эл-т из М-обратимый,т.e. к нему есть обратный,тогда М наз. группой

Опр. 1.6 Пусть на непустом мн К задана бинарная алг.опер <K;+>-коммут.группа(аддитивная тоже);<K; >-полугруппа и эти операц. связаны условием дистрибутивности,т.е. ,то тогда К-наз кольцом

Если операц. умнож в К-коммут,то кольцо К наз. коммут.Если в кольце К есть еденица,то кольцо К наз кольцом с еденицей

Опр.1.7 если в кольце К,кот комм.и с еденицей,у каждого ненулевого эл-та сущ обратный,то тогда К наз полем

Опр. 1.8 Пусть F-поле,PсF,кот само явл полем относ операции слож и умнож кот в F,тогда говорят,что Р-подполе поля F или,что F явл расширением поля Р

Опр. 1.9 Пусть Р-некот.поле, V≠ зада бинарная опер слож на 0

  1. 1) слож ассоц

  2. 8) 1

  3. Слож коммут = 3) 4)

0)определено умнож в скалярах(эл-тов из Р) на векторы (эл-ты из Р) т.е.

5) 6)

7)

Тогда говорят,что явл линейным(векторным)пространством над Р

Опр. 1.10 Пусть F-поле,непустое подмножество Р наз подполем поля F,если само явл полем отномит тех операций которые сущ в F,в этом случае еще говорят,что F явл расширением поляР

2-3 Простое расширение поля.

Опр 2.1. Пусть Р-подполе в F, РсА и z F.Будем обозначать P(z)={ / }

Теор. 2.2 В условиях опр 2.1 Р(z) явл полем и это найм подполе а F,содержит Р и эл-т z

Опр 2.3 Р(z) наз простым расширением поля Р с помощью примитивного элемента z

Прим2.4 P=Q F=К z=

Q( )={ / }

={a+b /a,b Q} Q cQ f(x)=a+bx g(x)=1

Ввиду минимальности расширения получаем =Q f(x)=x2-2 g(x)=1

Опр. 2.5 Пусть РсF,эл-т z наз алгебраическим над Р,если сущ многочлен f(x) такой,что f(x) 0 и при этом f(z)=0.Если элемент z не явл алгебраич над Р,то он наз трансцендентным над Р

Опр.2.6 PcF. Расширение P(z) наз простым алг расширением,если эл-т z алгебр над Р и трансцинд,если z-трансцинд над Р

1.1.Простое расширение поля.

Пусть P[x] — кольцо полиномов от x над полем P, где P — подполе поля F. Напомним, что элемент a поля F называется алгебраическим над полем P, если a является корнем какого-нибудь полинома положительной степени из P [x].

Определение. Пусть P < F и a0F. Простым расширением поля P с помощью элемента a называется наименьшее подполе поля F, содержащее множество Р и элемент a. Простое расширение P с помощью a обозначается через P (a), основное множество поля P (a) обозначается через Р(a).

Пусть a0F, P [x] — кольцо полиномов от x и P[x]={f(a)*f0P[x]},т. е. P [a] есть множество всех выражений вида a0 + a1a+...+ anan, где а0, a1,...an0P и n — любое натуральное число.

Теорема 1.1. Пусть P [x]— кольцо полиномов от х над P и P (a)— простое расширение поля P. Пусть y — отображение P[x] на P[a] такое, что y(f)=f(a) для любого f из P[x]. Тогда:

(а) для любого а из Р y (а) = а; (b) y(x) = a; (с) y является гомоморфизмом кольца P [x] на кольцо P [a];

(d) Ker y ={f0P[x]*f(a)=0}; (е) фактор-кольцо P [x]/Кег y изоморфно кольцу P [a].

Доказательство. Утверждения (а) и (Ь) непосредственно следуют из определения y. Отображение y сохраняет главные операции кольца P [x], так как для любых f и g из P[x] y(f + g)=f(a)+g(a), y(fg)= f(a)g(a), y(1)=1.

Далее, по условию, y есть отображение Р[х] на Р[a]. Следовательно, y является гомоморфизмом кольца P [x] на кольцо P [a]. Утверждение (d) непосредственно следует из определения отображения y.Поскольку y — гомоморфизм кольца P [x] на P [a], то фактор-кольцо P[x]/Кег y изоморфно кольцу P [a].

Следствие 1.2. Пусть a — трансцендентный элемент над полем P. Тогда кольцо полиномов P [x] изоморфно кольцу P [a].

Доказательство. В силу трансцендентности a над P Kery={0}. Поэтому P[x]/{0}– P [a]. Кроме того, фактор-кольцо кольца P [x] по нулевому идеалу изоморфно P [x]. Следовательно, P [x]– P [a].

ТЕОРЕМА(о строении простого расширения с примитивным алгебраическим элементом):

, z – алгебраический над , p(x) – min полином z.

Тогда , где

P(z) P(z), f(x)=f(z)/1 P(z). Тогда , но НОД(g(x),p(x))=1 существуют u(x),v(x) ,g(x)u(x)+p(x)v(x)=1

g(z)u(z)+p(z)v(z)=1, но p(z)=0 g(z)u(z)=1

4. Конечное расширение поля.

Пусть P — подполе поля F. Тогда мы можем рассматривать F как векторное пространство над P, т. е. рассматривать векторное пространство F + { 0P},где - операция умножения элементов из F на скаляр 0P.

Определение. Расширение F поля P называется конечным, если F, как векторное пространство над P, имеет конечную размерность. Эта размерность обозначается через [F : P].

Cв-во 2.1. Если a — алгебраический элемент степени n над P, то [P (a):P]=n.Это свойство непосредственно следует из теоремы (Пусть a — алгебраический над полем P элемент положительной степени n. Тогда любой элемент поля P(a) однозначно представим в виде линейной комбинации n элементов 1, a, ..., an-1 с коэффициентами из Р.).

Определение. Расширение F поля P называется алгебраическим, если каждый элемент из F является алгебраическим над P.

Теорема 2.2. Любое конечное расширение F поля P является алгебраическим над P.

Доказательство. Пусть n-размерность F над P. Теорема, очевидно, верна, если n = 0. Предположим, что n>0. Любые n+1 элементов из F линейно зависимы над P. В частности, линейно зависима система элементов 1, a, ..., an, т. е. существуют в P такие элементы с0, с1,…,cn не все равные нулю, что с01+ с1a+…+cn an = 0.

Следовательно, элемент a является алгебраическим над P.

Отметим, что существуют алгебраические расширения поля, не являющиеся конечными расширениями.

Теор.2.7 Конечное расширение конечного расширения явл конечным

Пусть F — конечное расширение поля L и L — конечное расширение поля P. Тогда F является конечным расширением поля P и [F : P] = [F : L][ L : P].

Доказательство. Пусть(1) a1,…,am — базис поля L над P (как векторного пространства) и (2) 1,…, n— базис поля F над L . Любой элемент d из F можно линейно выразить через базис:(3) d = l1 1+...+ln n (lk L).

Коэффициенты 1k можно линейно выразить через базис (1):(4) lk = p1k a +…+ pmk am (pik P).Подставляя выражения для коэффициентов lk в (3), получаем d = pik ai k. i {1,…,m}k {1,…,n}.Таким образом, каждый элемент поля F представим в виде линейной комбинации элементов множества B, где B = { a i k /{1,..., m}, k 0 {l,..., n}}.Отметим, что множество B состоит из nm элементов.Покажем, что B есть базис F над полем P. Нам надо показать, что система элементов множества B линейно независима. Пусть (5) cikai k = 0, I,k

где cik 0 P. Так как система (2) линейно независима над L , то из (5) следуют равенства (6) с1ka 1+...+сmka m = 0 (k = 1,..., n).

Поскольку элементы a1, ..., am линейно независимы над P, то из (6) следуют равенства c1k = 0,…,cmk = 0 (k = 1, ..., n),показывающие, что все коэффициенты в (5) равны нулю. Таким образом, система элементов B линейно независима и является базисом F над P.Итак установлено, что [F , P] = nm = [F: L][L: P]. Следовательно, F является конечным расширением поля P