- •Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость. Факторы, влияющие на точность взвешивания весов.
- •Явление электромагнитной индукции (э.И.). Индукционные токи. Индукционные кухонные электроплиты.
- •Строение вещества и атома. Явления, подтверждающие сложное строение атома. Модель атома Томсона и Резерфорда.
- •Испарение и конденсация. Насыщенные и ненасыщенные пары. Измерение влажности воздуха. Технология сушки овощей и фруктов. Приготовление пищи под давлением
- •Алюминиевая посуда
- •И. Ньютон и его вклад в развитие естествознания. Законы сохранения в механике: Три закона Ньютона и следствия из них.
- •Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.
- •Воздух. Состав воздуха. Основные характеристики воздуха. Давление. Влажность. Назначение и принцип действия вытяжки.
- •Электромагнитное излучение и его природа. Шкала электромагнитных волн. Параметры волн. Области применения различных частотных диапазонов. Принцип работы микроволновой печи. Грили.
- •Развитие представлений о природе света. Корпускулярная и волновая теория света. Законы света. Свет и цвет в природе. Оптические приборы. Роль цвета в одежде, интерьере помещения.
- •Причина радуги — преломление света
- •Полярные сияния
- •Статическое электричество в природе, быту и на производстве. Воздействие его на человека и защита от него.
- •Постоянный и переменный электрический ток. Основные понятия. Электрический ток в различных средах. Первая помощь при поражении электрическим током. Электромеханическое оборудование.
- •Электрический ток в газах.
- •Свободное падение тел. Ускорение свободного падения. Движение тела, брошенного вертикально вверх. Искусственные спутники Земли.
- •Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел. Закон Гука. Модуль Юнга.
- •Геоцентрическая и гелиоцентрическая теории строения мира. Эволюция Вселенной
- •Возникновение галактик и звезд. Современное представление о Галактике и Вселенной (теория большого взрыва).
- •Планеты солнечной системы и их характеристики.
- •Магнитное поле и его свойства. Действие магнитного поля на электрический заряд. Магнитное поле Земли.
- •Л.Р. Измерение ускорения свободного падения с помощью математического маятника
- •Порядок выполнения работы
- •Л.Р. Определение массы воздуха в классной комнате
- •Л.Р.Измерение плотности вещества, из которого изготовлено твердое тело произвольной формы
- •Л.Р. Измерение удельного сопротивления материала, из которого сделан проводник
- •Л.Р. Расчет общего сопротивления двух резисторов при их последовательном и параллельном соединении.
Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел. Закон Гука. Модуль Юнга.
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела. Характерной особенностью аморфных тел является их изотропность, то есть независимость всех физических свойств (механических, оптических и т. д.) от направления. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок).
По своей структуре аморфные тела очень близки к жидкостям. Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур. В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества.
Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl . Такие кристаллы называются ионными.
Деформа́ция— это изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Деформации разделяют на обратимые (упругие) и необратимые (пластические). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия; в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия.
Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.
Проявление упругости лучше всего проследить с пружинными весами (или стержнем) под действием подвешенного груза.
Для тонкого растяжимого стержня закон Гука имеет вид:
(Сила
упругости, возникающая в теле при его
деформации, прямо пропорциональна
величине этой деформации)
Здесь
—
сила, которой растягивают (сжимают)
стержень,
—
абсолютное удлинение (сжатие) стержня,
а
—
коэффициент
упругости (или жёсткости).
Коэффициент
упругости зависит как от свойств
материала, так и от размеров стержня.
Можно выделить зависимость от размеров
стержня (площади поперечного сечения
и
длины
)
явно, записав коэффициент упругости
как
В
системе СИ жесткость измеряется в
ньютонах
на метр
(Н/м).
Величина
называется
модулем
упругости первого рода или модулем Юнга
и является механической характеристикой
материала.
Если
ввести относительное удлинение
и
нормальное напряжение в поперечном
сечении
то
закон Гука в относительных единицах
запишется как
В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме
Следует иметь в виду, что закон Гука выполняется только при малых деформациях.
В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.
Основные положения молекулярно-кинетической теории строения вещества. Диффузия. Роль диффузии в технологических процессах приготовления пищи
Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.
В основе молекулярно-кинетической теории лежат три основных положения:
Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
Атомы и молекулы находятся в непрерывном хаотическом движении.
Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.
Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение. Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном в 1827 г. Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую.
Постоянное хаотичное движение молекул вещества проявляется также в другом легко наблюдаемом явлении – диффузии. Диффузией называется явление проникновения двух или нескольких соприкасающихся веществ друг в друга. Наиболее быстро процесс протекает в газе, если он неоднороден по составу. Диффузия приводит к образованию однородной смеси независимо от плотности компонентов. Так, если в двух частях сосуда, разделенных перегородкой, находятся кислород O2 и водород H2, то после удаления перегородки начинается процесс взаимопроникновения газов друг в друга, приводящий к образованию взрывоопасной смеси – гремучего газа. Этот процесс идет и в том случае, когда легкий газ (водород) находится в верхней половине сосуда, а более тяжелый (вислород) – в нижней.
Значительно медленнее протекают подобные процессы в жидкостях. Взаимопроникновение двух разнородных жидкостей друг в друга, растворение твердых веществ в жидкостях (например, сахара в воде) и образование однородных растворов – примеры диффузионных процессов в жидкостях.
В реальных условиях диффузия в жидкостях и газах маскируется более быстрыми процессами перемешивания, например, из-за возникновения конвекционных потоков.
Наиболее медленно процесс диффузии протекает в твердых телах. Однако, опыты показывают, что при контакте хорошо очищенных поверхностей двух металлов через длительное время в каждом из них обнаруживается атомы другого металла.
Диффузия и броуновское движение – родственные явления. Взаимопроникновение соприкасающихся веществ друг в друга и беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходят вследствие хаотичного теплового движения молекул.
Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10–10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.
Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры.
При повышении температуры средняя кинетическая энергия молекулы становится больше E0, молекулы разлетаются, и образуется газообразное вещество.
В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела)
В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему. Этим объясняется текучесть жидкостей
В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10–8 м, т. е. в десятки раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.
Диффузия играет большую роль в жизни человека. Она используется не только на предприятиях и в промышленности, но и в быту. Благодаря диффузии происходит множество важных жизненных процессов, обеспечивающих жизнь на Земле и существование всего живого.
именно благодаря диффузии кислород из лёгких проникает в кровь, а из крови – в ткани;
вследствие диффузии газов состав воздуха у поверхности Земли однороден;
диффузия играет существенную роль в питании растений и животных;
явление диффузии используется при извлечении сахара из свёклы на сахарных заводах;
диффузия служит основой многих распространенных технических операций: спекания порошков, химико-термической обработки металлов (напр., азотирования и цементации сталей), гомогенизации сплавов, металлизации и сварки металлов, дубления кожи и меха, крашения волокон; перемещения газов с помощью т. наз. диффузионных насосов;
она одна из стадий многочисленных химико-технологических процессов представления о диффузионном переносе вещества используют при моделировании структуры потоков в химических реакторах и др.
Из-за диффузии все вредные отходы, оставляемые человеком, проникают в почву, воду, а затем впитываются животными и растениями. Это наносит серьезный вред окружающей среде.
На явлении диффузии основаны соление овощей, варка варения, получение компотов и многие другие технологические процессы, в повседневной жизни – заварка чая.
