- •Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость. Факторы, влияющие на точность взвешивания весов.
- •Явление электромагнитной индукции (э.И.). Индукционные токи. Индукционные кухонные электроплиты.
- •Строение вещества и атома. Явления, подтверждающие сложное строение атома. Модель атома Томсона и Резерфорда.
- •Испарение и конденсация. Насыщенные и ненасыщенные пары. Измерение влажности воздуха. Технология сушки овощей и фруктов. Приготовление пищи под давлением
- •Алюминиевая посуда
- •И. Ньютон и его вклад в развитие естествознания. Законы сохранения в механике: Три закона Ньютона и следствия из них.
- •Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.
- •Воздух. Состав воздуха. Основные характеристики воздуха. Давление. Влажность. Назначение и принцип действия вытяжки.
- •Электромагнитное излучение и его природа. Шкала электромагнитных волн. Параметры волн. Области применения различных частотных диапазонов. Принцип работы микроволновой печи. Грили.
- •Развитие представлений о природе света. Корпускулярная и волновая теория света. Законы света. Свет и цвет в природе. Оптические приборы. Роль цвета в одежде, интерьере помещения.
- •Причина радуги — преломление света
- •Полярные сияния
- •Статическое электричество в природе, быту и на производстве. Воздействие его на человека и защита от него.
- •Постоянный и переменный электрический ток. Основные понятия. Электрический ток в различных средах. Первая помощь при поражении электрическим током. Электромеханическое оборудование.
- •Электрический ток в газах.
- •Свободное падение тел. Ускорение свободного падения. Движение тела, брошенного вертикально вверх. Искусственные спутники Земли.
- •Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел. Закон Гука. Модуль Юнга.
- •Геоцентрическая и гелиоцентрическая теории строения мира. Эволюция Вселенной
- •Возникновение галактик и звезд. Современное представление о Галактике и Вселенной (теория большого взрыва).
- •Планеты солнечной системы и их характеристики.
- •Магнитное поле и его свойства. Действие магнитного поля на электрический заряд. Магнитное поле Земли.
- •Л.Р. Измерение ускорения свободного падения с помощью математического маятника
- •Порядок выполнения работы
- •Л.Р. Определение массы воздуха в классной комнате
- •Л.Р.Измерение плотности вещества, из которого изготовлено твердое тело произвольной формы
- •Л.Р. Измерение удельного сопротивления материала, из которого сделан проводник
- •Л.Р. Расчет общего сопротивления двух резисторов при их последовательном и параллельном соединении.
Свободное падение тел. Ускорение свободного падения. Движение тела, брошенного вертикально вверх. Искусственные спутники Земли.
Свободным падением называют падение тел в безвоздушном пространстве (вакууме) из состояния покоя (т. е. без начальной скорости) под действием притяжения Земли, т.е. под действием силы тяжести. Если сопротивление воздуха мало, то падение тела можно считать свободным.
Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ускорением. Это наглядно видно из следующего опыта. Три разных по массе предмета, например дробинка, пробка и птичье перышко в стеклянной трубке с воздухом падают сначала дробинка, потом пробка, а затем перышко. Если воздух из трубки откачать, то все три тела падают одновременно. Следовательно, в вакууме все тела независимо от их масс падают с одинаковым ускорением. Но если предметы будут падать в какой либо среде, время падения будет отличаться. На поверхности Земли, на уровне моря, ускорение свободного падения меняется от 9,81 м/с² на полюсах до 9,78 м/с² на экваторе.
Парашютист, в течение нескольких первых секунд прыжка, находится практически в свободном падении.
На объекте, находящемся в состоянии свободного падения, все физические процессы протекают так же, как и в состоянии невесомости. Это используется, например, при тренировке космонавтов: самолёт с космонавтами набирает большую высоту и пикирует, в течение нескольких минут находясь в состоянии свободного падения, при этом космонавты и экипаж испытывают состояние невесомости.
Поскольку свободное падение представляет собой равноускоренное движение без начальной скорости, к нему применимы все формулы, выведенные для такого вида движения.
Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.
Максимальная дальность полета составит при бросании тела под углом 450
Если задать телу достаточно большую скорость, то тело вообще может не упасть на Землю, а будет описать круговые траектории, оставаясь на одной и той же высоте над Землей. Такое тело становится искусственным спутником Земли (ИСЗ). Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием силы притяжения Земли, т.е. тело находится в свободном падении (невесомости). Путь, который проходит ракета-носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета — это пролет ступеней носителя с работающими двигателями, пассивный участок — полет отработавших ракетных блоков после их отделения от ракеты-носителя.
Первая
космическая скорость — это минимальная
скорость, при которой тело, движущееся
горизонтально над поверхностью планеты,
не упадёт на неё, а будет двигаться по
круговой орбите радиусом равным радиусу
планеты. Для Земли первая космическая
скорость
7,9
км/с, для
Луны v1
= 1,68 км/с.
