
- •Перелік умовних скорочень і термінів
- •1. Умовні скорочення
- •2. Терміни
- •1. Огляд методів розв’язку слар, що виникають у мсе
- •1.2 Ітераційні методи розв’язку слар
- •1.2.1 Метод простих ітерацій
- •1.2.2 Метод Зейделя
- •1.2.3 Метод релаксації
- •1.2.4 Багатосітковий метод
- •1.2.5 Метод Ланцоша
- •2. Схеми компактного зберігання розріджених матриць
- •2 Схема
- •3 Оптимізація обчислень
- •4. Чисельні експерименти
- •4.1 Пружне деформування тонкостінної просторової рами
- •4.2 Контактна взаємодія оболонкової конструкції і ложемента
- •Висновки
- •Перелік посилань
4. Чисельні експерименти
Була розв’язана задача з кількістю невідомих, що перевищує чотири мільйона та проведене порівняння ефективності прямих і ітераційних методів. Конфігурація тестового комп'ютера наведена в табл. 4.1.
Таблиця 4.1 – Конфігурація тестового комп'ютера
Мікропроцесор |
Intel Core 2 Duo E7200 (Socket LGA775, 3172 МГц) |
Оперативна пам'ять |
4*(Kingston ValueRAM KVR667D2N5/1G) (4 ГБ) |
Системна плата |
ASUS P5K (Socket LGA775, Intel P35+ICH9) |
ОС |
Microsoft Windows Vista Ultimate x64 SP1 |
4.1 Пружне деформування тонкостінної просторової рами
Була розглянута задача про пружне деформування тонкостінної просторової рами (рис. 4.1) при наступних геометричних параметрах: L=H=2м, L1=1,98м, L2=0,01м. Пружні властивості матеріалу рами: E=106Па, ν=0,3. Зовнішнє навантаження P=102Н.
Кінцево-елементна модель усієї конструкції містила 1449604 вузла і 4374320 скінчених елементів у формі тетраедра. СЛАР розв’язувалася з використанням першої схеми. Час розв’язку склав близько двох годин.
4.2 Контактна взаємодія оболонкової конструкції і ложемента
Була вирішена задача про контактну взаємодію оболонкової конструкції і ложемента (рис. 4.2).
Дана задача часто виникає на практиці. При транспортуванні або зберіганні з горизонтальним розташуванням осі оболонкові конструкції встановлюються на кругові опори – ложементи. Взаємодія підкріплених оболонкових конструкцій і ложементів здійснюється через опорні шпангоути, довжина яких уздовж вісі оболонки порівняна з шириною ложементів і багато менше радіуса оболонки і величини зони контакту.
Дискретна модель ложемента (у тривимірній постановці) представлена на рис. 4.3.
При побудові даної КЕ-моделі було використано 6689 вузлів і 15323 КЕ у формі тетраедра. Розмір нестиснутої матриці жорсткості для такої задачі становить (6689*3)2*8=3221475912 байт, що приблизно дорівнює 3 ГБ оперативної пам'яті.
Задача
розв’язувалася
двома способами – методом Гауса і
методом Ланцоша. Порівняння
результатів розв’язку наведено в табл.
4.2.
Таблиця 4.2 – Результати розв’язку
|
Метод Гауса |
Метод Ланцоша |
Час розв’язку, (сек.) |
3137 |
2194 |
З табл. 4.2 легко бачити, що час розв’язку методом Ланцоша значно менше, ніж у випадку використання методу Гауса.
Висновки
У даній роботі розглянуті методи розв’язку СЛАР. Розглянуті алгоритми компактного зберігання матриці жорсткості дозволяють значно скоротити об'єм необхідної пам'яті для зберігання матриці жорсткості.
Класичні методи зберігання, що враховують симетричну і стрічкову структуру матриць жорсткості, що виникають при застосуванні методу скінчених елементів, як правило, не застосовні при рішенні контактних задач, тому що при їхньому рішенні матриці жорсткості декількох тіл поєднуються в одну загальну матрицю, ширина стрічки якої може прагнути до розмірності системи.
Викладені у роботі методи компактного зберігання матриці коефіцієнтів СЛАР дозволяють на прикладі розв’язку контактних задач досягти значної економії оперативної пам'яті. Це дозволяє розв’язувати системи з мільйонами невідомих на сучасних персональних комп'ютерах.
Вважаю, що для оптимальної продуктивності при розв’язку СЛАР високих ступенів треба використовувати 24 ГБ оперативної пам'яті стандарту DDRIII 1333, мікропроцесор Intel Core i7-965 Extreme Edition, системну плату ASUS Rampage II Extreme, дві відеокарти AMD Radeon HD 4870X2 та твердотільний накопичувач OCZ Summit. Потужність такої конфігурації може скласти близько 5 терафлопс, що досить непогано. Для пришвидшення розрахунків вважаю доцільним розгін мікропроцесора, використання у програмі спеціалізованих наборів інструкцій процесорів по роботі з числами з плаваючою крапкою та використання у програмі ресурсів відеопроцесора відеокарти, за умови оптимізації програми під такі нововведення. Також значно пришвидшити розрахунки допоможе використання більшої кількості процесорів (або процесорних ядер).
Наведені алгоритми розв’язку СЛАР високих ступенів у задачах механіки можуть ефективно застосовуватися для аналізу тривимірних задач високої розмірності, що особливо актуально в задачах сучасного машинобудування.