
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
Б
арабанные
фильтры. Фильтр представляет собой
аппарат непрерывного действия, работающий
под вакуумом и характеризующийся в
основном противоположными направлениями
силы тяжести и движения фильтрата.
Фильтр имеет горизонтальный цилиндрический перфорированный барабан 1 покрытый снаружи фильтровальной тканью. Барабан вращается вокруг своей оси и на 0,3 - 0,4 своей поверхности погружен в суспензию, находящуюся в резервуаре 4. Поверхность фильтрования барабана разделена по его образующим на ряд прямоугольных ячеек, изолированных одна от другой. Ячейки при движений по окружности присоединяются в определенной последовательности к источникам вакуума и сжатого воздуха. Каждая ячейка соединяется трубкой 2 с различными полостями неподвижной части распределительного устройства 5. При этом ячейка проходит последовательно зоны фильтрования первого обезвоживания, промывки, второго обезвоживания, удаления осадка и регенерации ткани. В зоне фильтрования ячейка соприкасается с суспензией, находящейся в резервуаре 4 с качающейся мешалкой 5, и соединяется трубкой с полостью 6, которая сообщается с источником вакуума. При этом фильтрат через трубку и полость уходит в сборник, а на поверхности ячейки образуется осадок. В зоне первого обезвоживания осадок соприкасается с атмосферным воздухом, а ячейка соединяется с той же полостью 6. Под действием вакуума воздух вытесняет из пор осадка жидкую фазу суспензии, которая присоединяется к фильтрату. В зоне промывки на частично обезвоженный осадок из разбрызгивающих устройств 7 подается промывная жидкость, а ячейка соединяется трубкой с полостью 5, которая также сообщается с источником вакуума. Промывная жидкость через трубку и полость уходит в другой сборник.
В зоне второго обезвоживания промытый осадок также соприкасается с атмосферным воздухом, а ячейка остается соединенной с той же полостью 8, поэтому промывная жидкость вытесняется из пор осадка и уходит в сборник. Для предотвращения образования в осадке трещин во время промывки и последующего обезвоживания на него накладывается часть бесконечной ленты 9, которая вследствие трения об осадок перемещается по направляющим роликам 10. В зоне удаления осадка ячейка соединяется трубкой с полостью 11, которая сообщается с источником сжатого воздуха. Под действием последнего осадок разрыхляется и отделяется от ткани, после чего скользит по поверхности ножа 12 и поступает на дальнейшую обработку. В зоне регенерации ткань продувается сжатым воздухом в направлении, противоположном направлению движения фильтрата сквозь ткань; при этом воздух поступает в ячейку по трубке из полости 13. Барабанный вакуум-фильтр с небольшой степенью погружения барабана в суспензию наиболее пригоден для разделения суспензий со значительным содержанием твердых частиц с достаточно хорошей проницаемостью.
21. Устройство и работа ленточных фильтров.
Такой фильтр представляет собой аппарат непрерывного действия, работающий под вакуумом, в котором направления силы тяжести, и движения фильтрата совпадают. Опорная резиновая лента с прорезями 1 перемещается по замкнутому пути при помощи приводного 2 и натяжного 3 барабанов. Фильтрованная ткань в виде бесконечной ленты 4 прижимается к опорной резиновой ленте при натяжении роликами 5. Суспензия поступает на фильтрованную ткань из лотка 6,а промывная жидкость подается на образовавшийся
Ленточный вакуум-фильтр
1-опорная резиновая лента, 2-приводной барабан, 3-натяжной барабан, 4-фильтровальная ткань, 5-натяжные ролики, 6-лоток для подачи суспензии, 7-форсунки для подачи промывной жидкости, 8-вакуум камеры для фильтрата, 9-коллектор для фильтрата, 10-вакуум камеры для промывной жидкости, 11-коллектор для промывной жидкости, 12-направляющий ролик, 13-бункер для осадка
осадок из форсунок 7. Фильтрат под вакуумом отсасывается в камеры 8, находящиеся под опорной резиновой лентой, и через коллектор 9 отводится в сборник. Промывная жидкость, также под вакуумом, отсасывается в камеры 10 и через коллектор 11 уходит в другой сборник. На приводном барабане фильтрованная ткань отходит от резиновой ленты и огибает ролик 12; при этом осадок отделяется от ткани и попадает в бункер 13. На пути между роликами 5 ткань промывается или очищается щетками. На описанном ленточном фильтре осуществляется одноступенчатая промывка осадка.
Преимущества: простота конструкции по сравнению со многими другими фильтрами непрерывного действия (отсутствие распределительного устройства), четкое разделение фильтрата и промывных вод, возможность противоточной промывки осадка.
Недостатки: небольшая поверхность фильтрования по сравнению с занимаемой площадью, наличие неиспользуемых зон на фильтровальной перегородке.
Промывку можно производить двумя способами: 1) методом вытеснения, когда промывная жидкость подается на слой осадка в виде капель или струи, проходит через слой осадка, вытесняет оттуда фильтрат и отводится; 2) методом разбавления, когда осадок снимается с фильтровальными перегородками, помещается в емкость, перемешивается с промывной жидкостью и образовавшаяся суспензия фильтруется.