
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
I-IV
- секцни
фильтра; 1, 9—
вентиляnоры;
2 - входной газоход; 3 - камера, 4
- рукава; 5 -
распределительная решетка; 6, 8 - дроссельные
клапаны; 7 - выхлопная труба; 10 - встряхивающий
механизм; 11 - рама; 12 - шнек; 13 - шлюзовый
затвор.
Рукава из ткани натянуты на раме которая подвешена к рычажному механизму. Запыленный газ подают с внешней стороны рукавов, проходя через ткань газ очищается, пыль остаётся на наружной пов-ти рукавов. Периодически слой пыли стряхивают и отправляют в бункер. Стряхивание осуществляется рыажным механизмом в ручную или от привода. Из бункера пыль удаляется шнековым транспортёром.
Для непрерывной работы применяют секционные аппараты.
Для изготовления рукавов используется хлопчатобумажные и шерстяные ткани, их недостаток – ограничение по температуре до 90 ºС. Широко применяют синтетические ткани (т-ра до 400 ºС). Срок службы рукава около 1 года.
Производительность определяется удельной нагрузкой ткани т.е. объёмом запыленных газов в м3 проходящих через единицу пов-ти м2 в единицу времени. В зав-ти от типа ткани удельная нагрузка колеблется от 75 до 250 м3/м2ч.
При расчёте
рукавного фильтра опред-ют площадь
поверхности фильтрования:
,
где Vc
– секундный расход, η – коэффициент
использования поверхности (около 0,75).
Число рукавов:
,
где D
– диаметр рукава (0,2 – 0,4 м), l
– длина рукава (1,5 – 3 м).
Перепад давления на рукаве обычно составляет Δp = 60 – 100 мм.водн.ст.
19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
Классификация осуществляется по след. признакам:
1. Организационный
а. периодического действия – все операции осуществляются на одном и том же участке перегородки.
б. непрерывного действия – относительно фильтровальной перегородки процесс не установившийся, каждый отрезок фильтровальн. перегородки последовательно проходит все стадии осуществляемые в разных областях фильтра.
2. По способу создания движущей силы
фильтры работающие под наливом, вакуумом и избыточным давлением.
3. По конструкции
Периодического действия |
Неприрывного действия |
|
|
ФПАК – фильтр пресс автоматический камерный.
При выборе фильтра руководствуются концентрацией суспензии и свойствами осадка.
При малой конц-и желательно использовать периодические фильтры. Если осадок способен забивать поры перегородки можно использовать фильтры со слоем вспомогательного материала.
рамный фильтр-пресс
а
-
плита, б - рама, 1
– гладкая
поверхность плиты, 2
- желобок
3
- фильтровальная
перегородка; 4
-
канал для удаления фильтрата и промывной
жидкости, 5 - отверстия для пцрохода
суспензич,6 - отверстия для прохода
промывкой жидкости
В стадии фильтрования суспензия по среднему каналу 1 и каналам 2 поступает в пространство 3, ограниченное двумя фильтровальными перегородками (примыкающими к рифленым поверхностям плит 4) и внутренней поверхностью рамы 5. Жидкая фаза суспензии одновременно проходит через обе фильтровальные перегородки, после чего по желобам и каналам 6 поступает к кранам 7, которые в этой стадии работы фильтр-пресса открыты у всех плит 4.
В стадии промывки по двум боковым каналам 8 и каналам 9, которые имеются только у половины плит 4, подают промывную жидкость. Во время промывки половина кранов 7 закрыта таким образом, что промывная жидкость последовательно проходит одну фильтровальную перегородку, слой осадка, вторую фильтровальную перегородку, после чего по каналам 6 и открытым кранам 7 отводится из фильтрпресса. По окончании промывки осадок в фильтр прессе продувают сжатым воздухом или паром. Затем отодвигают подвижную плиту, разъединяют плиты и рамы и осадок удаляют в бункер.
П
атронные
фильтры относятся к работающим под
давлением аппаратам периодического
действия, в которых направления силы
тяжести и движения фильтрата
перпендикулярны. В патронном фильтре
используются цилиндрические фильтровальные
патроны, устанавливаемые в вертикальном
положении в цилиндрическом кожухе с
коническим дном и съемной крышкой.
Патрон состоит из пористых колец 1, нанизанных на закрытую снизу центральную трубу 2 с радиальными отверстиями 3 и продольными ребрами 4. В процессе разделения суспензии фильтрат последовательно проходит через слой 5 уже образовавшегося осадка, стенкиколец 1 и отверстия 5, после чего по вертикальному каналу 6 уходит из патрона в коллектор и удаляется из фильтра. Для изготовления патрона могут быть использованы различные пористые материалы (в частности, пористое стекло или керамика).
Дисковые вакуум-фильтры. Такой фильтр состоит из нескольких вертикальных дисков, насаженных по центру на полый горизонтальный вращающийся вал на некотором расстоянии один от другого. Каждый диск имеет с обеих сторон рифленую поверхность и с обеих сторон покрыт фильтровальной тканью. Под дисками находится резервуар с разделяемой суспензией, в которую почти до половины погружены диски. При вращении дисков фильтрат под действием вакуума проходит через ткань и по желобкам на рифленой поверхности их поступает в полость вала, на одном из концов которого имеется распределительное устройство, как и в описай ном выше барабанном вакуум-фильтре. Осадок, образовавшийся на поверхности ткани, удаляется с нее при помощи ножей. Рассмотренный фильтр в особенности пригоден для разделения суспензий, содержащих достаточно однородные и медленно оседающие твердые частицы, которые образуют не растрескивающийся и не требующий промывки осадок.