
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
141 Сушилки «кипящего слоя»
Сушилки с кипящим
(псевдоожиженным) слоем. Эти сушилки
являются оиним из прогрессивных
типов аппарата для сушки. Процесс в
кипящем слое позволяет значительно
увеличить поверхность контакта между
частицами материала и сушильным агентом,
интенсифицировать испарение влаги
из материала и сократить (до нескольких
минут) продолжительность сушки.
Сушилки с кипящим слоем в настоящее
время успешно применяются в химической
технологии не только для сушки
сильносыпучих зернистых материалов,
но и материалов, подверженных комкованию,
например для сульфата аммония,
поливинилхлорида, полиэтилена и некоторых
других полимеров, а также пастообразных
материалов (пигментов, анилиновых
красителей), растворов, расплавов и
суспензий. Наиболее распространены
однокамерные сушилки непрерывного
действия. Высушиваемым материал подается
из бункера 1 питателем 2
в слой
материала, «кипящего» на газораспределительной
решетке 3 в
камере 4
сушилки.
Сушильный агент—горячий воздух или
топочные газы, разбавленные воздухом,
который подается в смесительную
камеру 5
вентилятором
6, -
проходит с заданной скоростью через
отверстия решетки 3
и поддерживает
на ней материал в кипящем состоянии.
Высушенный материал ссыпается через
штуцер 7
несколько
выше решетки 3
и удаляется
транспортером 8.
Отработанные
газы очищаются от унесенной пыли в
циклоне 9 и
батарейном пылеуловителе 10,
после чего
выбрасываются в атмосферу. В сушилках
этого типа с цилиндрическим корпусом
наблюдается значительная неравномерность
сушки, обусловленная тем, что при
интенсивном перемешивании в слое
время пребывания отдельных частиц
существенно отличается от его средней
величины. Поэтому применяют сушилки
с расширяющимся кверху сечением, например
коническим. Скорость газа внизу камеры
должна превышать скорость осаждения
самых крупных частиц, а вверху - быть
меньше скорости осаждения самых мелких
частиц.
142 Общая характеристика процесса адсорбции. Пром адсорбенты.
Под адсорбцией мы будем понимать процесс поглощения одного или нескольких компонентов из газовой смеси или раствора твердым веществом — адсорбентом. Поглощаемое вещество носит название адсорбата, или адсорбтива. Процессы адсорбции обычно обратимы. Благодаря их обратимости становится возможным выделение поглощенных веществ из адсорбента, или проведение процесса десорбции. Адсорбция применяется главным образом при небольших концентрациях поглощаемого вещества в исходной смеси, когда требуется достичь практически полного извлечения адсорбтива. Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами и т.д. Значение адсорбционных процессов сильно возросло за последнее время вследствие расширения потребности в веществах высокой чистоты. Различают физическую и химическую адсорбцию.
Характеристики адсорбентов и их виды: В качестве адсорбентов применяются пористые твердые вещества с большой удельной поверхностью, обычно относимой к единице массы вещества. Адсорбенты имеют различные по диаметру капиллярные каналы – поры. Характер процесса адсорбции определяется размером пор. Удельная поверхность макропор относительно очень мала, поэтому на их стенках адсорбируется ничтожное количество вещества. На поверхности переходных пор, размеры которых обычно значительно превышают размеры адсорбируемых молекул, в процессе адсорбции образуются слои поглощенного вещества. Размеры микропор приближаются к размерам адсорбируемых молекул и адсорбция в микропорах приводит к заполнению их объема. Адсорбенты характеризуются своей поглотительной, или адсорбционной, способностью, определяемой концентрацией адсорбтива в единице массы или объема адсорбента.
Поглотительная способность адсорбента по отношению к данному веществу зависит от температуры и давления, при которых производится адсорбция, и or концентрации поглощаемого вещества. Максимально возможная при данных условиях поглотительная способность адсорбента условно называется его равновесной активностью.
В промышленности в качестве поглотителей применяют главным образом активные угли и минеральные адсорбенты (силикагель, цеолиты и др.), а также синтетические ионообменные смолы (иониты).