
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
130 Простой сушильный вариант теор сушилки.
Рассм основн сх процессов конвективной сушки на примере воздушной сушилки, в которой воздух нагревается только в подогревателе (калорифере) перед сушилкой и однократно проходит ч/з сушилку. Здесь отсутствует дополнительный подогреватель воздуха. Пусть на сушку поступает воздух с влагосодержанием х0 кг/кг сухого воздуха, причем расход абсолютно сухого воздуха составляет L кг/ч. Из сушилки (при отсутствии потерь воздуха) выходит такое же количество абсолютно сухого воздуха, а влагосодержание меняется до х2 кг!кг сухого воздуха. Масса влаги, испаряющейся из материала в сушилке, составляет W кг/ч. Тогда матер баланс по влаге будет: Lx0+W=Lx2; Из уравнения баланса определяем расход абс сухого воздуха на сушку и удельный расход воздуха на испарение из мат-ла 1кг влаги:
; Обозначим влагосодержание воздуха, нагретого в калорифере и поступающего в сушилку, через х1 кг/кг сухого воздуха. Проходя через калорифер, воздух не поглощает и не отдает влаги, поэтому его влагосодержание остается постоянным, т. е. x1 = х0. Соответственно: ;
Для анализа и
расчета процессов сушки удобно ввести
понятие теоретической
сушилке, в
которой температура материала,
поступающего
на сушку, равна нулю, нет
расхода тепла на нагрев материала и
транспортных устройств, нет дополнительного
подвода тепла в самой
сушильной камере
и потерь тепла в окружающую среду.
Следовательно, для теор сушилки:
и
При этом в
соответствии с уравнением теплового
баланса
при
для теор сушилки I1=I2.
т. е. процесс сушки в такой сушилке изображается на /—x-диаграмме линией / = const. Это означает, что испарение влаги в теор сушилке происходит только за счет охлаждения воздуха, причем количество тепла, передаваемого воздухом, полностью возвр-ся в него с влагой,испаряемой из материала.
В действительных сушилках энтальпия воздуха в сушильной камере обычно не остается постоянной. Если приход тепла в камеру сушилки больше его расхода, то в соответствии с уравнением тепл баланса энтальпия воздуха при сушке взр-ет (I2> I1). При отрицательном значении Δ:I2<I1.
131. Сушильный вариант с рецеркуляцией частичной и полной.
Сушка с частичной рециркуляцией отработанного воздуха. При сушке ю этой схеме часть отработанного воздуха возвращается (смешивается
перед наружным калорифером со свежим воздухом, поступающим в сушилку.
Параметры смеси,
получаемой при смешении L0
кг/ч свежего и L2
кг/ч сработанного воздуха (в пересчете
на абсолютно сухой воздух) с раэличными
параметрами , можно опр, пользуясь
правилом аддитивности:
разделим все члены прав части на L0;
пусть L2/L0=n.
Тогда приравняем уравнения:
Удельный расход смеси свежего и рециркулирующего воздуха в пересчете на сухую массу составит ( в кг сухого воздуха на 1 кг влаги):
Удельный расход тепла на калорифер:
При сушке с частичной циркуляцией материал сушится при более низких температурах воздуха, чем в сушилке основной схемы. Вместе с тем сушка происходит в среде более влажного воздуха, так как влагосодержание смеси, больше влагосодержания свежего воздуха х0. Такой режим сушки желателен для материалов, которые при неравномерной сушке воздухом с низкой влажностью при высоких температурах могут подвергнуться разрушению (например, керамические изделия). Воздух с высоким влагосодержанием хсм получается по этой схеме без затрат пара на его искусственное увлажнение. При добавлении части отработанного воздуха к свежему увеличивается объем циркулирующею воздуха, а следовательно, и скорость его движений через сушилку, что способствует более интенсивному тепло- и влагообмену.
Надо иметь в виду, что для сушилки с рециркуляцией требуется больший расход энергии на вентилятор и большие капитальные затраты, чем для сушилки основной схемы. В связи с этим выбор кратности циркуляции воздуха следует производить на основе технико-экономического расчета.