
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
Ректификация — широко распространенный способ наиболее полного разделения смесей летучих жидкостей, частично или целиком растворимых друг в друге. Ректификация представляет собой перегонку, которая сопровождается взаимодействием поднимающихся паров со стекающей им навстречу жидкостью (флегмой), полученной при частичной конденсации паров.
Процесс ректификации осуществляется в противоточных аппаратах-колоннах: пары перегоняемой жидкости протекают снизу вверх, а навстречу парам сверху вниз протекает жидкость, подаваемая в верхний элемент колонны. Между жидкой и паровой фазами возникает массообмен, вследствие которого пары по мере их продвижения по колонне обогащаются легколетучим компонентом, а жидкость—менее летучим компонентом. В конечном итоге пар, выходящий из верхней части колонны, представляет собой более или менее чистый легколетучий компонент, конденсация которого дает готовый продукт—дистиллят, а из нижней части колонны вытекает сравнительно чистый менее летучий компонент, так называемый кубовый остаток, который, так же как и дистиллят, может быть конечным продуктом перегонки.
Жидкость, поступающую на орошение колонны, называют флегмой; ее получают путем конденсации паров, поднимающихся из верхней части колонны, в специальных конденсаторах—дефлегматорах. Для образования паров нижний элемент колонны снабжают греющими приспособлениями в виде змеевиков или трубчаток, в которые и подводят необходимое количество тепла, в большинстве случаев с греющим водяным паром.
Э
кстрактивная
и азеотропная дистилляция основаны
на добавлении к смеси некоторого нового
вещества, так называемого растворителя,
для увеличения различия в летучести
наиболее трудно разделяемых компонентов.
Экстрактивную и азеотропную дистилляцию применяют главным образом для разделения смесей, компоненты которых имеют очень близкие температуры кипения и с трудом разделяются обычной ректификацией. Эти методы дистилляции могут быть эффективно использованы в том случае, когда подлежащие разделению компоненты отличаются по структуре и при добавлении третьего компонента различно изменяют свою летучесть.
102.Схема непрерывной ректификационной установки. Принцип действия.
Ректификация – массообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами (насадки, тарелки). В процессе ректификации происходит непрерывный обмен между жидкой и паровой фазой. Жидкая фаза обогащается более высоко кипящим компонентом, а паровая фаза – более низкокипящим. Процесс массообмена происходит по всей высоте колонны между стекающей вниз флегмой и поднимающимся вверх паром.
Для непрерывного проведения процесса ректификации необходимо, чтобы поступающая на разделение смесь соприкасалась со встречным потоком пара с несколько большей концентрацией высококипящего компонента, чем в жидкой смеси. Поэтому исходную смесь подают в то место ректификационной колонны 3, которое соответствует этому условию. Место ввода исходной смеси называют тарелкой питания, или питательной тарелкой. Положение тарелки питания специально рассчитывается. Тарелка питания делит колонну на две части: верхнюю - укрепляющую и нижнюю – исчерпывающую. В укрепляющей части колонны происходит обогащение поднимающихся паров низкокипящим компонентом, а в исчерпывающей части – удаление этого компонента. Поток пара, поднимающегося по колонне, поддерживается испарением части кубовой жидкости в кипятильнике 4, а поток жидкости, текущей по колонне сверху вниз – возвратом части флегмы, образующей при конденсации выходящих из
колонны паров в дефлегматоре 5. Отметим, что отношение количества киломолей флегмы Ф, приходящейся на 1 кмоль обтекаемого дистиллята D, называют флегмовым числом.
К достоинствам непрерывной ректификации относятся: высокая производительность, однородность получаемого продукта, лёгкость автоматизации, возможность рекуперации теплоты.
Схема ректификационной установки
1 – ёмкость для исходной смеси; 2 – подогреватель; 3 – колонна; 4 – кипятильник; 5 – дефлегматор; 6 – делитель флегмы; 7 – холодильник; 8 – сборник дистиллята; 9 – сборник кубового остатка
Вывод:при конденсации 1 кмоля высококипящего компонента выделяется достаточно тепла на испарение 1 кмоля низкокипящего компонента.
2)В состав пара
на входе в дефлегматор равен составу
дистиллята
=
3)В состав пара
поднимающегося из кипятильника равен
составу жидкости стекающей с 1-й тарелки
куба испарителя
=
.