
- •1.Предмет и задачи курса. Классиф. Осн. Хим.-техн. Проц.
- •2.Осн. Кинетич з-н технологических процессов и его выраж для разл. Классов.
- •3.Материальный и энергетич балансы технологических процессов.
- •4. Кинетические параметры процессов и их определение.
- •5.Моделирование процессов.Вывод критериальн. Зависимости для переп.Давл. При движ. Ж. По прям.Тр.
- •6.Гидромеханические процессы и аппараты.Класиф.Неоднор систем и методов их разделения.
- •7.Определение скорости осажд. Частиц, вывод формулы Стокса.
- •8.Определение скорости осажд. Или диаметра частиц графическим методом с использованием Ar,Re,Ly.
- •10. Влияние т, р и концентрации на скор. Осажд частиц.
- •11 Конструкции пылеосадительных камер.
- •12 Отстойники для суспензии.
- •13 Разделение неоднородных смесей под действием разности давлений на пористых перегородках.
- •14 Фильтрование. Методы фильтрования. Харпктеристика перегородок и осадков.
- •15 Основное кинетическое уравнение фильтрования.
- •17 Физический смысл и способы определения констант фильтрования.
- •18 Конструкция рукавного фильтра для запыленных газов. Рабочие характеристики.
- •19 Классификация фильтров для суспензии. Фильтры периодического действия для суспензии (рамный фильтр-пресс, патронный, дисковый).
- •20 Барабанный вакуум фильтр непрерывного действия. Устройство и работа.
- •21. Устройство и работа ленточных фильтров.
- •22. Разделение неоднородных систем в поле центробежных сил, фактор разделения.
- •23. Циклоны. Структура циклонного потока сплошной среды. Механизм осаждения частиц в циклонном потоке. Основные рабочие параметры циклона.
- •24. Расчет размеров циклона нииогаз. Технологический расчет циклонов нииогаз.
- •25. Батарейные циклоны, гидроциклоны.
- •29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
- •Автоматическая центрифуга полунепрерывного действия. Устройство, работа
- •30. Отстойная центрифуга со шнековой выгрузкой осадка.
- •31. Центрифуга непрерывного действия с пульсирующим поршнем.
- •32. Разделение неоднородных газовых систем под действием электрических сил. Конструкции электрофильтров.
- •33. Разделение неоднородных газовых систем под действием поверхностных сил. Конструкции аппаратов мокрой очистки.
- •43 Теплопроводность. Перенос тепла теплопроводностью через плоскую однослойную, многослойную и цилиндрическую стенку.
- •45. Конвективный теплообмен. Закон Ньютона.
- •46. Дифференциальное уравнение конвективного переноса тепла
- •47. Теория теплового подобия.
- •49. Основные критерии теплового подобия.
- •51. Теплоотдачи при продольном обтекании труб при вынужденном и турбулентном и ламинарном движении.
- •53. Теплоотдача при свободном движении теплоносителя.
- •54. Теплоотдача при кипении жидкости. Критическая тепловая нагрузка.
- •55.Теплоотдача при изменении агрегатного состояния жидкости (при конденсации).
- •56.Теплопередача через плоскую стенку при постоянных температурах.
- •57.Уравнение теплопередачи при переменных температурах теплоносителей. Определение средней разности температур. Выбор направления тока жидкости.
- •58. Сложный теплообмен. Зависимость коэффициента теплопередачи от частных коэффициентов теплоотдачи.
- •91. Способы интенсификации массообменных процессов.
- •92. Расчет массообменных аппаратов по числу единиц переноса (чеп).
- •93. Расчет массообменных аппаратов по числу ступеней изменения концентрации.
- •94.Общая х-ка процессов перегонки и ректификации1-й закон Коновалова
- •95. Фазовое равновесие в системе жидкость-пар для бинарных систем. Закон Рауля.
- •96. Простая перегонка. Материальный баланс процесса.
- •97. Перегонка с водяным паром. Температура перегонки.
- •98. Аппаратурное оформление процесса перегонки с водяным паром.
- •100. Перегонка под вакуумом, понятие о молекулярной дистилляции.
- •101. Ректификация. Х-ка обычной, экстрактивной и азеотропной ректификации.
- •102.Схема непрерывной ректификационной установки. Принцип действия.
- •103.Материальный баланс ректификационной установки.
- •104.Уравнения рабочих линий для укрепляющей и исчерпывающей частей колоны.
- •105.Построение рабочих линий ректификационной колонны на y-X диаграмме.
- •106.Это вопросы 107-109.
- •107.Влияние флегмового числа на высоту ректификационной колоны.
- •108.Определение минимального флегмового числа.
- •109.Определение оптимального флегмового числа.
- •110.Тепловой баланс ректификационной колоны.
- •111, Абсорбция _
- •112. Равновесие при абсорбции
- •113. Материальный балансы процесса
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 119
- •Вопрос 120
- •121. Специальные тарелки: клапан, пластинч, прямоточно-центробежн.
- •123. Сушка. Определение, методы сушки, область применения.
- •124. Статика сушки, основные параметры влаж воздуха
- •126. Диаграм Рамзина, применен для проц сушки(I-X-диаг влаж воздуха)
- •127. Материальный баланс воздушной сушилки.
- •128. Уд расход воздуха и тепла при конвективной сушке.
- •129. Температура мокрого термометра. Точка росы.
- •130 Простой сушильный вариант теор сушилки.
- •131. Сушильный вариант с рецеркуляцией частичной и полной.
- •132.Сушка с промежуточным подогревом воздуха по зонам.
- •133 Простой сушильный вариант реальной сушилки
- •134 Кинетика сушки. Движущая сила процесса.
- •135.Опытные кривые сушки…
- •136 Туннельные сушилки
- •137 Барабанные сушилки
- •138 Ленточные сушилки
- •140 Вальцовые сушилки
- •141 Сушилки «кипящего слоя»
- •142 Общая характеристика процесса адсорбции. Пром адсорбенты.
- •143.Фазовое равновесие при адсорбции. Изотермы адсорбции
- •144. Кинетика адсорбции. Расчетно-графические зависимости.
- •145. Типовые конструкции адсорберов с неподвижным, кипящим и движущемся слоем адсорбента.
- •150. Принципиальные схемы процесса экстракции и методы аппаратурного оформления.
- •153. Типовые конструкции экстракторов
29. Автоматическая центрифуга полунепрерывного действия. Устройство, работа.
Горизонтальные центрифуги с ножевым устройством для удаления осадка являются нормальными отстойными или фильтрующими центрифугами периодического действия с автоматизированным управлением.
В горизонтальной центрифуге с ножевым устройством операции загрузки суспензии, центрифугирования, промывки, механической сушки осадка и его загрузка выполняются автоматически. Центрифуга управляется электродвигательным автоматом, позволяющим по толщине слоя осадка контролировать степень заполнения ротора.
Автоматическая центрифуга полунепрерывного действия. Устройство, работа
Суспензия поступает в перфорированный ротор 1 по трубе 2 и равномерно распределяется в нем. На внутренней поверхности ротора расположены подкладочные сита, фильтровальная ткань и решетка, которая обеспечивает плотное прилегание сит к ротору во избежание их выпучивания, что недопустимо при ножевом съеме осадка. Ротор находится в литом кожухе 3, состоящем из нижней стационарной части и съемной крышки. Фугат удаляется из центрифуги через штуцер 4. Осадок срезается ножом 5, который при вращении ротора поднимается при помощи гидравлического цилиндра 6, падает в направляющий наклонный желоб 7 и удаляется из центрифуги через канал 8. Описанная центрифуга предназначается для разделения средне- и грубодисперсных суспензий.
30. Отстойная центрифуга со шнековой выгрузкой осадка.
В отстойных центрифугах со сплошными стенками производят разделение эмульсии и суспензий по принципу отстаивания, причем действие силы тяжести заменяется действием центробежной силы.
В отстойной центрифуге разделяемая суспензия или эмульсия отбрасывается центробежной силой к стенкам ротора, причем жидкая или твердая фаза с большей плотностью располагается ближе к стенкам ротора, а другая фаза с меньшей плотностью размещается ближе к его оси; осадок образует слой у стенок ротора, а фугат переливается через верхний край ротора.
В общем случае разделение суспензий в отстойных центрифугах складывается из стадий осаждения твердых частиц на стенках ротора и уплотнения образовавшегося осадка. Первая стадия протекает по законам гидродинамики, вторая – по закономерностям механики грунтов.
Процессы разделения суспензий в отстойниках и отстойных центрифугах существенно различаются. В отстойниках гравитационное поле однородно, а интенсивность поля центробежных сил возрастает по мере движения частицы к периферии ротора. Это приводит к тому, что при вращении ротора с определенным числом оборотов на частицу действует возрастающая центробежная сила, обусловливающая ускорение ее движения. В отстойниках частицы проходят через постоянные по площади поперечные сечения плоского слоя жидкости, а в отстойных центрифугах они перемещаются через возрастающие по площади поперечные сечения кольцевого слоя.
Схема действия отстойной центрифуги
Разделяющая способность отстойных центрифуг характеризуется индексом производительности, который является произведением цилиндрической поверхности осаждения в роторе на фактор разделения.
Учитывая, что фактор разделения выражает отношение скоростей отстаивания частиц в отстойной центрифуге и отстойнике, величину индекса производительность следует считать равной площади отстойника, эквивалентного по производительности для данной суспензии рассматриваемой центрифуге.
Центрифуги этого типа являются нормальыми отстойными или фильтрующими центрифугами непрерывного действия с горизонтальным или вертикальным ротором.
На рис. изображена отстойная центрифуга, в которую суспензия подается через кольцевое пространство между наружной трубой 1 с отверстиями 2 и внутренней трубой 3, предназначенной для подачи промывной жидкости. Через отверстие 4 суспензия поступает в зону между коническим ротором 5 со сплошными стенками и цилиндрическим основанием 6 шнека 7.
Отстойная центрифуга со шнековой выгрузкой осадка
Ротор находится в кожухе8 и вращается в полых цапфах 9. Шнековое устройство вращается в цапфах, находящихся внутри цапф ротора, причем скорость вращения шнекового устройства на 1,5-2% меньше скорости вращения ротора. Под действием центробежной силы твердые частицы суспензии отбрасываются к стенкам ротора и в виде осадка медленно перемещаются (вследствие разности скоростей вращения ротора и шнека) к отверстию 10 в роторе для выгрузки осадка, который удаляется через камеру 11. Образовавшаяся в результате отстаивания твердых частиц чистая жидкая фаза суспензии в виде фугата отводится через отверстия 12 и камеру 13.
При движении в незаполненной суспензией части ротора осадок дополнительно уплотняется, вследствие чего содержание жидкости в нем уменьшается. Осадок может быть промыт в роторе путем подачи промывной жидкости по трубе 3.
Режим работы центрифуги можно регулировать, изменяя продолжительность операций отстаивания и уплотнения путем изменения степени открытия отверстий или числа оборотов ротора и шнека.
Центрифуги с выгрузкой осадка шнеком характеризуются высокой производительностью и применяются для разделения тонкодисперсных суспензий с большой концентрацией твердой фазы, а также для классификации твердых частиц по размеру или плотности.