
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •41.Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51. Основы качественного и количественного рентгеноспектрального анализа.
- •52. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения, достоинства и недостатки рентгено-абсорбционного анализа.
- •56.Хромофорные и ауксохромные группы. Гисохромный и битохромный сдвиг. Гипо- и гипехромный эффекты.
- •57.Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •58.Приборы для проведения фото- и спектрофотометрического анализа. Оптическая схема фотоэлектроколориметра.
- •59.Основные положения количественного фотометрического анализа.
- •60.Типы отклонений закона светопоглощения от линейности и их причины.
- •61.Метод Фирордта.
- •62.Метод Аллена.
- •63.Аналитические применения фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65 Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67.Подготовка образцов в ик - спектроскопии.
- •68.Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71.Использование ик-спектроскопии для количественного анализа и анализа смеси веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74.Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимосвязь спектров поглощения и люминесценции. Правило Стокса, закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выход люминесценции. Закон Вавилова.
- •77 Вид спектров люминесценции и их основные характеристики.
- •78. Зависимость интенсивности люминесценции от конц. Люминесцируемого вещества, температуры, рН, примесей.
- •79. Гашение флуоресценции
- •80.Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ.
- •82Аппаратура и практическое применение люминесцентного анализа.
- •83 Схема и принцип действия фотометра люминесцентного.
83 Схема и принцип действия фотометра люминесцентного.
Рассмотрим оптическую схему фотометра люминесцентного ФЛ, приведенную на рис.64. Принцип действия этого фотометра основан на сравнении интенсивности люминесценции растворов, возбуждаемой излучением лампы.
В оптической схеме можно выделить ветвь возбуждающего излучения и ветвь флуоресцентного излучения - измерительную ветвь. В ветвь возбуждающего излучения входят следующие элементы: источник света, дающий излучение в диапазоне 300-600 нм; линза 2, с промощью которой расходящийся пучок от источника преобразуется в пучок параллельных лучей. для подбора характеристик возбуждающего излучения в параллельном ходе лучей установлены сетчатые ослабители 3, 4 и переменная ирисовая диафрагма 11, регулирующие интенсивность, и избирательные поглотители 5-10, т.е. цветные фильтры, с помощью которых подбирается спектральная характеристика возбуждающего излучения. Параллельный пучок лучей с помощью фокусирующей линзы 12 собирается в центре кювет 17 с исследуемым веществом, которые вводятся в измерительную ветвь поочередно. Каждая кювета имеет свою светоловушку 15. Кроме того, имеется поворотное зеркало 16. Светоловушки 15 и зеркало 16 предназначены для отвода потока возбуждения, прошедшего через кювету, и снижения фоновых помех.
Ветвь флуоресцентного излучения, т. Н. измерительная ветвь, расположена под углом 90° к направлению возбуждающего излучения. Для уменьшения рассеяния света перед кюветой на входе и выходе установлены ограничительные диафрагмы 1З и 14. Изображение светящегося объема люминесцирующего вещества из центра кюветы передается на входную щель 20 монохроматора. Перед входной щелью 20 установлено модулирующее устройство - обтюратор 19 -диск с отверстием, вращающийся с определенной скоростью. Благодаря о6тюратору непрерывный световой поток люминесценции преобразуется в прерывистый, что необходимо для получения на выходе из прибора переменного электрического тока. Монохроматор в данном приборе работает по симметричной схеме с двумя сферическими объективами 24 (т.н. схема Черни-Тернера). Этот блок предназначен для выделения из потока флуоресцентного излучения лучей с определенной длиной волны, на которой проводится измерение. Поток флуоресцентного излучения, пройдя входную щель 20 и фильтры 21, 22, устраняющие наложение спектров разных порядков, попадает на поворотное зеркало 23, направляющее его на объектив -24. Этот объектив направляет полихроматический пучок на диспергирующий элемент монохроматора - дифракционную решетку 25, имеющую 600 штрих./мм. На дифракционной решетке полихроматическое излучение разлагается на составляющие его монохроматические компоненты. Выделение требуемой волны диапазона 400-800 нм производится поворотом дифракционной решетки, выделенное излучение фокусирующим объективом 24 направляется на поворотное зеркало 23 и через выходную щель 26 - на фотоприемник 30. Линза 27, зеркало 28 и объектив 29 предназначены для фокусировки выходящего светового пучка на катоде фотоприемника 30, в качестве которого в приборе ФЛ используется фотоумножитель ФЭУ-79. Измерительным прибором является микроамперметр со шкалой 0-100 мкА.