
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •41.Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51. Основы качественного и количественного рентгеноспектрального анализа.
- •52. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения, достоинства и недостатки рентгено-абсорбционного анализа.
- •56.Хромофорные и ауксохромные группы. Гисохромный и битохромный сдвиг. Гипо- и гипехромный эффекты.
- •57.Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •58.Приборы для проведения фото- и спектрофотометрического анализа. Оптическая схема фотоэлектроколориметра.
- •59.Основные положения количественного фотометрического анализа.
- •60.Типы отклонений закона светопоглощения от линейности и их причины.
- •61.Метод Фирордта.
- •62.Метод Аллена.
- •63.Аналитические применения фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65 Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67.Подготовка образцов в ик - спектроскопии.
- •68.Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71.Использование ик-спектроскопии для количественного анализа и анализа смеси веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74.Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимосвязь спектров поглощения и люминесценции. Правило Стокса, закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выход люминесценции. Закон Вавилова.
- •77 Вид спектров люминесценции и их основные характеристики.
- •78. Зависимость интенсивности люминесценции от конц. Люминесцируемого вещества, температуры, рН, примесей.
- •79. Гашение флуоресценции
- •80.Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ.
- •82Аппаратура и практическое применение люминесцентного анализа.
- •83 Схема и принцип действия фотометра люминесцентного.
72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
Люминесцентный анализ –это совокупность методов молекулярной эмиссионной спектроскопии, основанных на явлении люминесценции, При проведении этого анализа регистрируется либо собственное свечение исследуемого объекта, либо свечение специальных реагентов – люминофоров, которым обрабатывают объект.
Люминесценция –это свечение вещества, возникающее после поглощения им энергии возбужден представляющее собой избыток над тепловым излучением, испускаемым веществом при данной температуре за счет eгo внутренней (тепловой) энергии, и продолжающееся в течение времени, превышающего период колебаний световой волны.
Люминесценция возникает при поглощении извне энергии разной природы и происхождения.
По виду возбуждения различают: фотолюминесценцию (возбуждение светом), радиолюминесненищо (возбуждение проникающей радиацией; к ней, в частности, относятся рентгено-, катодо-, ионо- и α-люминесценция), электролюминесценцию (возбуждение электрическим полем), хемилюминесценцию (возбуждение при протекании химических реакций),триболюминесценцию (возбуждение трением), кандолюминесценцию (возбуждение механическим воздействием( при разрушении кристаллов)) Для аналитических целей наиболее часто используется явление фотолюминесценции.
При фотовозбуждении молекулы электрон переходит из основного состояния в возбужденное, поглотив квант света.
По длительности люминесцентного свечения различают: флуоресценция и фосфоресценция. Флуоресценция – свечение длящееся после удаления источника возбуждения 10-10 10-12 сек. Свечение продолжающееся долее длительное время (от долей секунд до нескольких суток) наз. фосфоресценция.
В зависимости от характера процесса происходящим в флуоресцированом веществе различают два вида свечения: 1- свечение – дискретным центром, возникающее тогда когда лучистую энергию поглощают и излучают одни и те же молекулы или атомы, токая люминесценция наз. молекулярной (атомной).Такая люминесценция характерна для большинства веществ находящихся с жидко-, газо- или парообразном састоянии. В аналитических целях чаще всего используют, эти типы веществ. 2- Рекомбинационное свечение – возникающее в том случаи, если под действием энергии возбуждения в веществе возникают носители заряда – электроны в кристалл. веществах или ионы и радикалы в некоторых газах, жидкостях, стеклах, последующая рекомбинации которая сопровождается испусканием излучения.
73. Флуоресценция и фосфоресценция.
Люминесценция –это свечение вещества, возникающее после поглощения им энергии возбужден представляющее собой избыток над тепловым излучением, испускаемым веществом при данной температуре за счет eгo внутренней (тепловой) энергии, и продолжающееся в течение времени, превышающего период колебаний световой волны.
Люм. возник. при погл. извне эн.разн. прир. и происх.
По длительности люминесцентного свечения различают: флуоресценция и фосфоресценция. Флуоресценция – свечение длящееся после удаления источника возбуждения 10-10 10-12 сек. Свечение продолжающееся долее длительное время (от долей секунд до нескольких суток) наз. фосфоресценция.
В зависимости от характера процесса происходящим в флуоресцированом веществе различают два вида свечения: 1- свечение – дискретным центром, возникающее тогда когда лучистую энергию поглощают и излучают одни и те же молекулы или атомы, токая люминесценция наз. молекулярной (атомной).Такая люминесценция характерна для большинства веществ находящихся с жидко-, газо- или парообразном састоянии. В аналитических целях чаще всего используют, эти типы веществ. 2- Рекомбинационное свечение – возникающее в том случаи, если под действием энергии возбуждения в веществе возникают носители заряда – электроны в кристалл. веществах или ионы и радикалы в некоторых газах, жидкостях, стеклах, последующая рекомбинации которая сопровождается испусканием излучения.