
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •41.Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51. Основы качественного и количественного рентгеноспектрального анализа.
- •52. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения, достоинства и недостатки рентгено-абсорбционного анализа.
- •56.Хромофорные и ауксохромные группы. Гисохромный и битохромный сдвиг. Гипо- и гипехромный эффекты.
- •57.Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •58.Приборы для проведения фото- и спектрофотометрического анализа. Оптическая схема фотоэлектроколориметра.
- •59.Основные положения количественного фотометрического анализа.
- •60.Типы отклонений закона светопоглощения от линейности и их причины.
- •61.Метод Фирордта.
- •62.Метод Аллена.
- •63.Аналитические применения фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65 Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67.Подготовка образцов в ик - спектроскопии.
- •68.Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71.Использование ик-спектроскопии для количественного анализа и анализа смеси веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74.Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимосвязь спектров поглощения и люминесценции. Правило Стокса, закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выход люминесценции. Закон Вавилова.
- •77 Вид спектров люминесценции и их основные характеристики.
- •78. Зависимость интенсивности люминесценции от конц. Люминесцируемого вещества, температуры, рН, примесей.
- •79. Гашение флуоресценции
- •80.Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ.
- •82Аппаратура и практическое применение люминесцентного анализа.
- •83 Схема и принцип действия фотометра люминесцентного.
22. Схемы энергетических переходов в атомах.
Взаимодействие с электромагнитным излучением может приводить к ионизации или к переходам электронов на возбужденные уровни только при равенстве электромагнитной энергии, энергии ионизации или разности энергий верхнего и нижнего уровней возбужденного атома соответственно. Для возбуждения оптических спектров воздействием излучения применяют газоразрядные лампы и специальные дампы накаливания, которые испускают необходимый спектр излучения в зависимости от определяемых элементов.
Совокупность различных порций энергии (квантов), которые могут быть поглощены атомами данного элемента при переходе их внешних электронов с более низких уровней на более высокие, образуется его спектр поглощения, состоящий из большого числа линий, имеющих длины волн и частоты , зависящие от разности соответствующих уровней.
Число наблюдаемых на опыте линий поглощения каждого элемента зависит от спектра источника света и от концентрации возбужденных и невозбужденных атомов или ионов в просвечиваемом объекте для наблюдения полного спектра поглощения необходим источник излучения, обладающий непрерывным спектром. Однако и часто используют источники, которые испускают лишь излучение, подходящее для наблюдения какой-то части линий поглощения.
Спектр поглощения (спектр атомной абсорбции), отображающий способность атомов каждого элемента поглощать только строго определенный набор длин воли, является характеристичным в такой же степени, как и спектр испускания (эмиссии), т.к. спектр испускания определяется той же системой энергетических состояний валентных электронов.
Возникновение спектров эмиссии (испускания) связано с тем, что состояние поглотившего дополнительную энергию возбуждения, является неустойчивым. Возбужденные атомы, точнее электроны внешних оболочек, перешедшие на более высокие энергетические уровни примерно через 10-8 сек после возбуждения возвращаются в исходное состояние, отдавая избыточную энергию в виде электромагнитного излучения с частотой (длиной волны), соответствующей энергии энергетических уровней, между которыми происходит переход (рис.1).
Спектр испускания принято называть эмиссионным, когда излучающие атомы образуются главным образом при соударениях с частицами (возбуждение атомов происходит их бомбардировкой быстрыми электронами), и флуоресцентным, когда они образуются под действием излучения.
Линейчатые
спектры испускания и поглощения
наблюдаются либо в виде узких полосок
разной интенсивности, расположенных в
порядке изменения длин волн, либо в виде
такой же последовательности пиков
разной высоты, зависящей от интенсивности.
Особое
значение в спектральном анализе имеют
т.н. резонансные линии. Резонансными
линиями называются линии, которые
испускаются или поглощаются при переходах
между основными энергетическим уровнем
и самым низким возбужденным уровнем
для которого такие переходы допускаются
определенными правилами отбора. Эти
линии находятся на разных участках
оптического диапазона длин волн - от
ИК- до далекой УФ-области.
Длина волны резонансной линии уменьшается при переходе легко возбудимых к трудно возбудимым элементам.
В пределах одной группы таблицы Менделеева длина волны резонансных линий увеличивается сверху вниз.
Важной характеристикой спектральной линии, кроме ее положения на шкале длин волн, является интенсивность спектральной линии.
Интенсивность линий и спектрах испускания определяется числом квантов с энергией hml, испускаемых в 1 сек атомами, находящимися в 1 см3 при переходе с возбужденного уровня m на более низкий l-уровень.)
Концентрация Nm изменяется в зависимости от условий возбуждения, а вероятность перехода ml является атомной постоянной( т.н. коэффициент Эйнштейна для испускания). Концентрация возбужденных атомов данного элемента пропорциональна концентрации свободных атомов определяемого элемента N и зависит от температуры Т и от энергии возбуждения
Nm = 0Nе-Еm/RT, (1)
где 0 - коэффициент пропорциональности, учитывающий свойства атомов, испускающих излучение ;
к = 1,38 х 10-23 Дж/к - постоянная Больцмана.
Концентрация возбужденных атомов и интенсивность линий увеличивается по мере повышения температуры и уменьшения энергии возбуждения Em по экспоненте:
Im,l= 0Nе-E/kTfm,l
Где fm,l – вероятность спонтанного перехода.
Еще одной характеристикой спектральных линий является ширина спектральной линии. Спектральные линии имеют различную форму и разную ширину, что обусловлено свойствами системы| и внешними условиями, а также размером выходной щели спектрометра.
Шириной щели называют ширину ее контура при значении ординаты, равной половине ее максимального значения, т.е. при I = 1/2 I0
Рис.
2. К определению ширины