
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •41.Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51. Основы качественного и количественного рентгеноспектрального анализа.
- •52. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения, достоинства и недостатки рентгено-абсорбционного анализа.
- •56.Хромофорные и ауксохромные группы. Гисохромный и битохромный сдвиг. Гипо- и гипехромный эффекты.
- •57.Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •58.Приборы для проведения фото- и спектрофотометрического анализа. Оптическая схема фотоэлектроколориметра.
- •59.Основные положения количественного фотометрического анализа.
- •60.Типы отклонений закона светопоглощения от линейности и их причины.
- •61.Метод Фирордта.
- •62.Метод Аллена.
- •63.Аналитические применения фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65 Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67.Подготовка образцов в ик - спектроскопии.
- •68.Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71.Использование ик-спектроскопии для количественного анализа и анализа смеси веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74.Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимосвязь спектров поглощения и люминесценции. Правило Стокса, закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выход люминесценции. Закон Вавилова.
- •77 Вид спектров люминесценции и их основные характеристики.
- •78. Зависимость интенсивности люминесценции от конц. Люминесцируемого вещества, температуры, рН, примесей.
- •79. Гашение флуоресценции
- •80.Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ.
- •82Аппаратура и практическое применение люминесцентного анализа.
- •83 Схема и принцип действия фотометра люминесцентного.
21.Физ. Основы спектрального анализа.
Вся современная спектроскопия базируется на квантовой теории, согласно котрой в изолированном атоме распределение электронов по электронным оболочкам (энергетическим уровням) соответствует минимуму внутренней энергии. Такое состояние атома называется невозбужденным, нормальным, основным. При воздействии внешней энергии атом может перейти в возбужденное состояние или в состояние ионизации. Однако поглощаемая атомом дополнительная энергия может иметь лишь определенные, присущие каждому виду атомов (каждому химическому элементу) значения, которые зависят от заряда атомного ядра и от строения электронных оболочек Энергия, необходимая для перевода атома на основного состояния в какое-либо возбужденное состояние, называется энергией возбуждение а энергия, необходимая для ионизации –энергией ионизации.
Перестройки электронных оболочек атомов, происходящие в результате определенных внешних воздействий, и являются причиной возникновения оптических и рентгеновских атомных спектров. Оптические атомные спектры элементов являются отображением строения внешних электронных оболочек атомов элементов. При этом оптические характеристические спектры элементов можно наблюдать только в том случае, когда их атомы изолированы, т.е. когда исследуемое вещество атомизировано и имеет при этом малую плотность.
Особенности рентгеновских атомных, характеристических спектров определяются строением внутренних электронных оболочек. Такие спектры можно наблюдать даже тогда, когда атомы связаны в молекулах, т.к. при образовании молекул внутренние электронные оболочки атомов практически не изменяются.
Для описания оптических спектров пользуются схемами, в которых энергетическое состояния атома, точнее уровни энергии валентных электронов, изображают отрезками, расстояние между которыми пропорционально разности их энергий. Число уровней может быть очень большим. Расстояние между уровнями уменьшается по мере удаления от основного состояния и приближения к границе, соответствующей энергии ионизации, т.е. той энергии, приобретая которую внешний электрон покидает атом.
Энергия каждого возбужденного состояния больше нуля. Разрешенная правилами отбора изменения энергетических состояний атома или иона, т.н. разрешенные энергетические переходы, изображают на диаграмме стрелками, соединяющими начальные и конечные уровни. Порции энергии, поглощаемые при возбуждении, равны разностям энергий соответствующих конечного и начального уровней Е например, Е1 – Е0, Е2 – Е0 переходы электронов с низкоэнергетических уровней на более энергетические уровни происходят только с поглощением энергии.
Число допустимых энергетических состояний атомов изменяется периодически, по мере увеличения порядкового номера элемента. Наиболее просты схемы энергетических состояний элементов первой группы, имеющих по одному электрону на внешних оболочках при заполненных внутренних оболочках. Наиболее сложные схемы переходов переходных элементов, лантаноидов и др. элементов с недостроенными d- и f-подуровнями и с несколькими электронами на внешней оболочке.
В пределах каждого периода таблицы Менделеева энергетических состояний атомов усложняйся по мере увеличения атомного номера. При этом изменяется как разность соседних возбужденных уровней, так и энергия самого нижнего возбужденного уровня, называемого резонансным.
Элементы, заканчивающие периоды таблицы Менделеева, которых внешние электронные оболочки заполнены, имеют наибольшие значения энергии ионизации и возбуждения резонансных ypoвней, а элементы, с которых начинаются периоды - наименьшие энергии ионизации и энергия возбуждения резонансного уровня. По мере увеличения номеров указанных элементов их энергии ионизации энергии резонансного уровня увеличиваются.
В спектральном анализе возбуждение и ионизация атомов достигается их бомбардировкой быстрыми электронами, а также при взаимодействии атомов с излучением. При этом для ионизации атома необходимо, чтобы кинетическая энергия Ек, воздействующего электрона была равна или больше энергии ионизации данного элемента. Соответственно, возбуждение электронами происходит лишь тогда, когда их кинетическая энергия превышает энергию возбуждения соответствующего уровня.
По мере увеличения Ек последовательно возбуждаются элементы, имеющие всё более высокие энергии возбуждения.
Источниками электронов, возбуждающих оптические спектры в аналитической практике служат пламя, электрические разряды (дуга, искра) и др., в которых электроны приобретают энергию, соответствующую температуре от нескольких тысяч до нескольких десятков тысяч градусов.