
- •Лекции пахт ч1. Оглавление
- •Введение Предмет и задачи дисциплины.
- •Основные процессы химической технологии
- •Гипотеза сплошности среды.
- •Режимы движения жидких сред.
- •Теоретические основы процессов химической технологии.
- •Основные понятия
- •Законы сохранения
- •Закон сохранения энергии
- •Закон сохранения массы
- •Закон сохранения импульса (количества движения
- •Законы равновесия
- •Условия равновесия
- •Правило фаз
- •Механизмы переноса субстанций
- •Молекулярный механизм
- •Конвективный механизм.
- •Турбулентный механизм.
- •Условие проявления и направления процессов переноса.
- •Уравнения переноса субстанций. Перенос массы. Молекулярный механизм переноса массы.
- •Конвективный механизм переноса массы.
- •Турбулентный механизм переноса массы.
- •Перенос энергии.
- •Молекулярный механизм переноса энергии
- •Конвективный механизм переноса энергии.
- •Турбулентный механизм переноса энергии.
- •Перенос импульса.
- •Молекулярный перенос импульса.
- •Конвективный перенос импульса.
- •Турбулентный перенос импульса.
- •Законы сохранения субстанции.
- •Закон сохранения массы.
- •Интегральная форма (материальный баланс).
- •Локальная форма сохранения массы.
- •Закон сохранения массы.
- •Интегральная форма закона сохранения энергии (первый закон термодинамики).
- •Локальная форма закона сохранения энергии.
- •Закон сохранения импульса.
- •Интегральная форма закона сохранения импульса.
- •Локальная форма закона сохранения импульса.
- •Исчерпывающее описание процессов переноса.
- •Условия однозначности.
- •Поля скорости, давления, температуры и концентраций. Пограничные слои.
- •Аналогия процессов переноса.
- •Межфазный перенос субстанции.
- •Уравнения массо-, тепло-, импульсоотдачи. Локальная форма уравнений.
- •Интегральная форма уравнений.
- •Уравнения массо-, тепло- и импульсопередачи. Локальная форма уравнений.
- •Моделирование химико - технологических процессов
- •Геометрическое подобие
- •В ременное подобие
- •Подобие физических величин
- •Подобие начальных и граничных условий
- •Гидродинамическое подобие
- •Проблема масштабного переходадля промышленных аппаратов.
- •Понятие о сопряжённомфизическом и математическом моделировании.
- •Гидродинамическая структура потоков
- •Математическое моделированиеструктуры потоков.
- •Модель идеального вытеснения (мив).
- •Модель идеального смешения (мис).
- •Ячеечная модель (мя)
- •Диффузионная модель (мд)
- •Идентификация модели
- •Гидромеханические процессы и аппараты
- •Основное уравнение гидростатики
- •Давление покоящейся жидкости на дно и стенки сосуда
- •Уравнение Бернулли
- •Гидравлическое сопротивление трубопроводов и аппаратов
- •Потери напора по длине потока. Формула Дарси-Вейсбаха
- •Потери напора по длине турбулентного потока.График Никурадзе
- •Характеристики турбулентности.
- •График Никурадзе
- •Неустановившееся движение несжимаемой жидкости в трубопроводах. Инерционный напор
- •Гидравлический удар
- •. Гидравлический расчет трубопроводов
- •Расчет простого трубопровода.Характеристика трубопроводной сети
- •Расчет сифонного трубопровода
- •Расчет сложных трубопроводов
- •Расчет магистральной линии.
- •Основы расчета газопроводов
- •Понятие о технико–экономическом расчете трубопровода
- •Основы динамики двухфазных потоков
- •Течение жидкости через неподвижные зернистые слои и пористые перегородки.
- •Псевдоожиженные слои
- •Пневмотранспорт и гидротранспорт
- •Расчет гидравлического сопротивления аппаратов и оптимизация движения в них
- •Перемешивание в жидких средах
- •Механическое перемешивание
- •Классификация и конструкции мешалок
- •Движение жидкости в аппаратах с мешалками
- •Физическое моделирование аппаратов с мешалками
- •Пневматическое перемешивание
- •Другие способы перемешивания
- •Перемешивание в трубопроводах
- •Перемешивание инжекционными смесителями
- •Циркуляционное перемешивание
- •Разделение неоднородных систем.
- •Осаждение
- •Отстаивание
- •Отстойники
- •Расчет отстойников.
- •Осаждение под действием центробежных сил
- •Циклоны и отстойные центрифуги
- •Отстойные (осадительные) центрифуги.
- •Расчет отстойных центрифуг непрерывного действия.
- •Очистка газов в электрическом поле
- •Электрофильтры
- •Расчет электрофильтров.
Отстойные (осадительные) центрифуги.
Эти центрифуги применяют для разделения суспензий и эмульсий путем осаждения дисперсных частиц под действием центробежной силы. Кроме отстойных центрифуг в химической технологии используют фильтрующие центрифуги.
Помимо деления на отстойные и фильтрующие, центрифуги классифицируют по организации процесса (непрерывные и периодические); по расположению вала (вертикальные, горизонтальные, наклонные); по способу выгрузки осадка (с ручной, шнековой, гравитационной, центробежной выгрузкой и т. д.).
Схема простейшей отстойной центрифуги периодического действия показана на рис. 10-7. Основной частью центрифуги является сплошной барабан 2, насаженный на вращающийся вал 1. Под действием центробежной силы твердые частицы из суспензии отбрасываются к стенкам барабана и отлагаются в виде осадка. Осветленная жидкость (фугат) переливается в неподвижный корпус (кожух) 3 и удаляется через патрубок в его нижней части. По окончании отстаивания центрифугу останавливают и выгружают осадок с помощью лопаты или совка.
К недостаткам таких центрифуг относятся невысокая производительность и необходимость ручного труда.
На рис. 10-8 показана горизонтальная отстойная центрифуга непрерывного действия со шнековой выгрузкой осадка. Она состоит из конического отстойного барабана 1, вращающегося на полом внешнем валу 3, и внутреннего барабана 2 со шнековыми лопастями 4, вращающегося на полом внутреннем валу 5 с меньшей частотой, чем частота отстойного барабана. Суспензия вводится по трубе во внутренний барабан 2 и через окна 7 выбрасывается в отстойный барабан 1, где происходит ее разделение. Осветленная жидкость (фугат) перетекает в кожух 6 и удаляется из него через патрубок. Осадок перемещается в барабане справа налево с помощью шнека и благодаря различию частот вращения шнека и барабана выбрасывается в кожух 6 и удаляется через патрубок.
Достоинствами подобных центрифуг являются непрерывность действия, высокая производительность и возможность обработки суспензий с большой концентрацией дисперсных частиц. Основным недостатком их является высокое содержание жидкости в осадке и твердой фазы - в осветленной жидкости. Кроме того, центрифуги характеризуются повышенным расходом энергии.
Отстойные центрифуги для разделения эмульсий часто называютсепараторами. Широко распространены тарельчатые сепараторы (рис. 10-9). Эмульсия по центральной трубе попадает в нижнюю часть вращающегося барабана (ротора) 7, снабженного рядом конических перегородок-тарелок 2, которые делят смесь на несколько слоев (тем самым достигается уменьшение пути, проходимого частицей при осаждении). Более тяжелая жидкость отбрасывается центробежной силой к периферии ротора, более легкая перемещается к его центру. Путь движения жидкостей показан стрелками. Разделившиеся жидкости не соприкасаются и поэтому не могут вновь смешиваться.
В рассмотренном сепараторе используют тарелки с отверстиями. В сепараторах с тарелками без отверстий из суспензии выделяют твердую дисперсную фазу, которая оседает на внутренней стенке корпуса барабана. Осветленная жидкость движется к центру барабана, поднимается вверх и выходит из него. Осадок, образующийся на стенке барабана, обычно выгружают вручную. Однако за последние годы разработаны сепараторы, в которых выгрузка осадка осуществляется автоматически.
Тарельчатые сепараторы характеризуются высокой производительностью и высоким качеством разделения, однако имеют достаточно сложное устройство.
Значительное увеличение центробежной силы путем уменьшения радиуса вращения и одновременного увеличения частоты вращения заложено в основу конструирования центрифуг, называемых сверхцентрифугами. Фактор разделения в них Кp> 3000 и часто достигает несколько десятков тысяч, благодаря чему оказывается возможным разделение тонкодисперсных суспензий и эмульсий.
Схема трубчатой сверхцентрифуги периодического действия для осветления жидкостей показана на рис. 10-10. В кожухе 2 вращается трубчатый барабан (ротор) 1 со сплошными стенками, внутри которого имеются радиальные лопасти 3, препятствующие отстаиванию жидкости от стенок барабана при его вращении. Барабан жестко соединен с коническим шпинделем 7, подвешенным на опоре б, и приводится во вращение от шкива 5. В нижней части центрифуги установлен подпятник 4, через который в барабан проходит труба для ввода суспензии. Твердые частицы суспензии оседают на стенках барабана, а осветленная жидкость выбрасывается из него через отверстия вверху и удаляется из верхней части кожуха. Осадок удаляют вручную периодически после остановки центрифуги и разборки ротора. Ввиду небольшого рабочего объема подобные центрифуги применяют только для разделения суспензии с небольшим содержанием твердой фазы (не более 1%).
Для разделения эмульсий применяют трубчатые сверхцентрифуги непрерывного действия, отличающиеся более сложным устройством верхней части ротора, позволяющим раздельно отводить расслоившиеся жидкости.