
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
7.4. Соотношение спектров одиночного и периодического сигналов
Спектр ST(f) = S(kf) периодического сигнала sT(t) с периодом Т дискретен (f = 1/T). Спектр S(f) одиночного сигнала s(t), заданного на интервале Т, непрерывен и представляет собой спектральную плотность сигнала при T . Но периодический сигнал можно представить и в виде свертки одного периода с гребневой функцией Дирака:
sT(t) = s(t) * ШT(t).
При переходе в частотную область получаем:
ST(f) = (1/T)S(f)Ш1/T(f) = S(kf),
ST(f) = (1/T) S(f)(f-k/T). (7.11)
Отсюда следует, что спектр периодического сигнала представляет собой дискретизированный спектр одиночного сигнала, нормированный на длительность периода.
С другой стороны, одиночный сигнал s(t) может быть получен из периодического сигнала sT(t) умножением на селектирующий прямоугольный импульс ПT(t):
s(t) = sT(t)ПT(t).
Спектр одиночного сигнала:
S(f) = TST(f) * ПT(f) = Т S(kf)sinc[T(f-k/T)], (7.12)
т.е. непрерывный спектр одиночного сигнала однозначно устанавливается по спектру периодического сигнала (интерполяция рядом Котельникова-Шеннона в частотной области).
7.5. Дискретизация по критерию наибольшего отклонения
Задача абсолютно точного восстановления сигнала на практике обычно не ставится, в отличие от задачи минимального физического объема информации, при котором сохраняется возможность ее восстановления в непрерывной форме с определенным допустимым значением погрешности. Такая задача актуальна всегда, и особенно при дистанционных методах регистрации и обработки информации, передаче сигналов по каналам связи и при подготовке информации к длительному хранению. Одним из методов решения этой задачи является дискретизация сигналов по критерию наибольшего отклонения.
В процессе дискретизации по критерию наибольшего отклонения задается допустимое значение погрешности восстановления сигнала При восстановлении сигнала непрерывная функция s(t) аппроксимируется, как правило, степенными полиномами n-го порядка. Погрешность восстановления функции s(t) полиномом sa(t) определяется остаточным членом L(t):
L(t) = s(t) - sa(t) = (t).
Шаг дискретизации выбирается из условия обеспечения L(t) < по всему интервалу определения функции s(t). Как правило, динамика функции s(t) может существенно изменяться в различные моменты времени по интервалу регистрации, при этом шаг дискретизации также может изменяться, при условии не превышения заданной погрешности на каждом шаге. При установленном значении уменьшение числа отсчетов обеспечивается повышением степени аппроксимирующего многочлена. На практике обычно ограничиваются ступенчатой, линейной и параболической аппроксимацией полиномами соответственно нулевой, первой и второй степеней.
В качестве интерполирующих многочленов используют многочлены Лагранжа. Для многочленов Лагранжа нулевой степени значение sa(t) в момент времени t на интервале ti<t<ti+1 между двумя последовательными отсчетами функции принимается равным отсчету s(ti+1). Если восстановление сигнала s(t) проводить по двум отсчетам: sa(ti) = [s(ti+1)-s(ti)]/2, то при том же шаге дискретизации погрешность восстановления сигнала уменьшается вдвое. Но при использовании двух последовательных отсчетов лучше использовать многочлены Лагранжа первой степени, т.е. соединение двух последовательных отсчетов прямой линией, что дает еще большее уменьшение погрешности восстановления аналоговой формы сигнала.
В качестве экстраполирующих многочленов используется многочлены Тейлора. Для многочлена Тейлора нулевой степени условия восстановления сигнала практически не отличаются от многочлена Лагранжа, за исключением направления (от текущего зарегистрированного отсчета и вперед по t). Для многочленов Тейлора более высоких степеней при восстановлении сигнала помимо отсчета s(ti) используется также соответствующие значения производных в точке отсчета. Восстановление сигнала многочленами Тейлора происходит без задержки во времени. Однако при использовании многочленов выше нулевой степени для точного восстановления сигнала по сравнению с интерполяционными методами требуется в два раза более высокая частота дискретизации.