
- •Содержание
- •Введение
- •1 Анализ электрических цепей постоянного тока
- •1Расставим токи
- •2 Анализ нелинейных электрических цепей постоянного тока
- •3 Расчет однофазных линейных цепей переменного тока
- •1)Расставим токи
- •4 Расчет трехфазных линейных цепей переменного тока
- •1) Расставим токи.
- •5 Исследование переходных процессов в электрических цепях Задание
- •Литература
- •Курсовой проект
- •По дисциплине: «Теоритические основы электротехники»
- •Заключение
- •6 Охрана труда
- •7 Энерго- и материалосбережение
5 Исследование переходных процессов в электрических цепях Задание
Для электрической цепи (рис.5.1):
определить практическую длительность переходного процесса ток в цепи и энергию электрического или магнитного поля при t = 2τ. Построить графики i=f(t) и eL=f(t).
Рисунок 5- Исследуемая электрическая цепь
Дано:
R=140 Ом;
Rр=60 Ом;
L=0.75 Гн ;
U=200 B.
Рисунок 5.1- Исследуемая электрическая цепь
1. Согласно схеме
iуст=I=
=
A
(20)
Чтобы найти закон изменения переходного тока, запишем уравнение в общем виде
i=
iуст
+icв=
iуст+А
В этой формуле
icв= А ,
где icв- свободная составляющая тока; А - достоянная интегрирования; е = =2,71 ~ основание натурального логарифма; τ — постоянная времени переходного процесса,
τ=
где R-
величина сопротивления, через которое
проходит переходный ток;
t — текущее время.
Определяем постоянную интегрирования, полагая t = 0, тогда уравнение
i= iуст +icв= iуст+А примет вид:
i0=iуст+А т. к. е° = 1
Значит, А = i0 - iyст = 0 — I,
то есть А = -I
А=-1.42А
(21)
Запишем уравнение (закон изменения переходного тока) при включении катушки
i=iycт+ iсв=iуст+А = I - I = I×(1 - );
В нашем случае i=1.42×(1 - );
Находим постоянную времени переходного процесса
τ=
=
τ=
(22)
Практическая длительность переходного процесса
5т = 1.42×0,005= 0,025 с (23)
2. Вычислим значения переходного тока i = f(t), в менты времени t = 0, t = τ , t=2τ, t=3τ, t = 4τ, t = 5 τ.
Значения переходного тока для заданных значений времени:
t=0,
i0=1.42×
(1 -
)
=1.42×
(1 -1) = 0 A;
t=
,
i1=1.42×
(1 -
)
=1.42×
(1-
)
=1.42×
(1- 0,367) =0,89 A;
t=2
,
i2=1.42×
(1 -
)
=1.42×
(1 -
)
= 1.42×
(1- 0,135)= 1.22 A
t=3
,
i3=1.42×
(1 -
)
=1.42×
(1 -
)
=1.42×
(1- 0,049)= 1.35 A;
(24)
t=4
,
i4=1.42×
(1 -
)
=1.42×
(1 -
)
= 1.42×
(1- 0,018)=1.39 A;
t=5
,
i5=1.42×
(1 -
)
=1.42×
(1 -
)
=1.42×(1-
0,007)=1.41 A;
Строим график i = f(t).
Закон изменения ЭДС самоиндукции можно получить из формулы
eL=-L
-L
(I
- I
)
=-I•L•
=-I•L•
=-I•R•
=-U
В нашем случае eL= -200
Значения ЭДС самоиндукции для заданных значений времени следующие:
t=0,
e0=-200×
=-200В;
t=
,
е1=-200×
=-200×0,367=-73,4
В;
t=2
,
i2=-200×
=-200×0,135=-27В;
t=3
,
i3-200×
=-200×0,049=-9,8В;
(25)
t=4
,
i4=-200×
=-=-200×0,018=-3,6
В;
t=5
,
i5=-200×
=-200×0,007=-1,4
В;
Строим график eL = f(t).
3. Энергия магнитного поля при t = 2τ равна:
Wм=L×i22
2=0,75×1,22
2=0,55 Дж.
(26)
4. Переключаем переключатель из положения 1 в положения 2 (отключаем катушку от источника постоянного напряжения при одновременном ее замыкании на сопротивление).
В
этом случае мы отключаем цепь от источника
и при переключении в положение 2 в
образовавшемся контуре ток придерживается
за счет энергии, накопленной в магнитном
поле катушки. Энергия магнитного поля
непрерывно уменьшается, так как в
активном сопротивлении контура идет
необратимый процесс превращения
электрической энергии в тепловую.
i=iycт+ iсв=iуст+А
В этом случае iуст=0, т.к. при отключении цепи от источника ток в цепи будет равен нулю.
Тогда i=А , (27)
где
t=L/R+Rp=
–
постоянная времени переходного процесса.
Определим постоянную интегрирования, пологая t=0, тогда уравнение
i=А , примет вид:
i0=Аe0,т.е. i0=А,
но
i0=
А
– согласно первому закону коммутации
ток в первый момент коммутации будет
таким, каким был в последний момент до
коммутации.
Значит, А=1.42А, тогда i= 1.42 A.
Длительность переходного процесса t=5 =5. 0.004=0.02 c. (28)
Строим график i= f(t), задавшись моментами времени t = 0, t = τ , t=2τ, t=3τ, t = 4τ, t = 5 τ. Данные расчета сведены в таблицу 2.
Таблица 2
t,c |
0 |
τ |
2 τ |
3 τ |
4 τ |
5 τ |
|
|
|
|
|
|
i,A |
1.42 |
0.52 |
0.19 |
0.06 |
0.02 |
0.009 |
|
|
|
|
|
5. В соответствии с законом изменения ЭДС самоиндукции получим
el=-L
=Ue-t/
В нашем случае
el=U
200
(29)
Строим график el= f(t), задавшись моментами времени t = 0, t = τ , t=2τ, t=3τ, t = 4τ, t = 5 τ. Данные расчета сведены в таблицу 3.
Таблица 3
t,c |
0 |
τ |
2 τ |
3 τ |
4 τ |
5 τ |
|
|
|
|
|
|
el, |
200 |
73.4 |
27 |
9.8 |
3.6 |
1.4 |
|
|
|
|
|