Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Protsi_apparaty_33_Kontrolnaya.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
888.32 Кб
Скачать

12. Принцип конденсационной очистки

Конденсационную обработку отбросных газов обычно включают в технологический цикл, если процесс сопровождается ощутимыми потерями промежуточных или конечных продуктов. Часто посредством конденсации улавливают и возвращают в технологический процесс пары растворителей, удаляемых с поверхности изделий после нанесения функциональных, защитных и окрашивающих слоев. Иногда конденсацию применяют для извлечения из газового потока ценных (дорогостоящих) или особо опасных веществ.

Степень улавливания (глубина извлечения) загрязнителя зависит от степени охлаждения и сжатия газовых выбросов. В производственных условиях температуру и давление принимают такими, чтобы энергозатраты на конденсацию составляли незначительную долю общих затрат на технологию. Поэтому

степень извлечения даже дорогостоящих продуктов назначают невысокой, как правило, в пределах 70...80%. По этой же причине использовать конденсацию в качестве самостоятельного средства санитарной очистки (т.е. с глубиной извлечения до санитарных норм) неприемлемо.

Существуют три направления в области газоочистки, где конденсация не только полезна, но и необходима.Это - предварительное осаждение основной массы паров загрязнителей перед адсорберами при высокой степени загрязнения выбросов;

- парциальное извлечение паров, содержащих соединения фосфора, мышьяка, тяжелых металлов, галогенов перед термообезвреживанием смеси загрязнителей;

- конденсация загрязнителей после химической обработки с целью перевода в легкоконденсируемые соединения, например, после хемосорбционных аппаратов.

Конденсация может быть применена для обработки систем, содержа щих пары веществ при температурах, достаточно близких к их точке росы. Этот метод наиболее эффективен в случае углеводородов и других органических соединений, имеющих достаточно высокие температуры кипения,при обычных условиях и присутствующих в газовой фазе в относительно высоких концентрациях. Для удаления загрязнителей, имеющих достаточно низкое давление пара при обычных температурах, можно использовать конденсаторы с водяным и воздушным охлаждением. Для более летучих растворителей возможна двухстадийная конденсация с использованием водяного охлаждения на первой стадии и низкотемпературного - на второй. Максимальное снижение содержания инертных или неконденсирующихся газов в обрабатываемой смеси позволяет облегчить проведение процесса конденсации и повысить ее экономическую эффективность, поскольку дает возможность исключить необходимость охлаждения до очень низких температур, соответствующих точке росы.

Конденсация может быть применена для предварительной обработки газов, при которой выделяются ценные растворители и уменьшается количество загрязнителей перед последующей стадией обработки. Парциальная конденсация может найти применение в тех случаях, когда обрабатываемый газ не выбрасывается, а снова возвращается в процесс или используется в процессе дожигания. Предварительная обработка конденсацией целесообразна в тех случаях, когда перед основной обработкой газовой поток необходимо охладить, например, при осуществлении адсорбции. Эффективность работы конденсаторов смешения находится в прямой зависимости от поверхности соприкосновения охлаждающего агента и пара, поэтому поверхность соприкосновения увеличивают, распыливая охлаждающий агент при помощи различных устройств.

Принцип конденсационной очистки : при охлаждении многокомпонентной газовой смеси, содержащей обычные неконденсирующиеся газы, охлаждение смеси сначала происходит за счет конвекции, а теплосодержание передающей поверхности (стенка трубы в поверхностном конденсаторе либо капля или пленка хладоагента при непосредственном контакте) уменьшается до тех пор, пока газовая фаза не насыщается одним или несколькими из ее конденсируемых компонентов. При дополнительном охлаждении конденсируемые газы диффундируют к теплопередающей поверхности, где происходит их конденсация с выделением скрытой теплоты. Начальная точка росы или температура насыщения для каждого компонента может быть определена из кривой зависимости температуры от давления пара для данного компонента при известной величине его мольной доли в парах:

yA · P = (pA)п,

где yA – мольная доля компонента А в парах; Р – суммарное абсолютное давление газа; (pA)п – парциальное давление компонента А в парах.

Компонент А начинает конденсироваться, когда температура газа снижается до температуры, при которой компонент А имеет давление пара pA = (pA)п.

После начала конденсации температура газа будет понижаться только по мере отвода соответствующего количества тепла и скрытой теплоты,вследствие которого в процессе снижения температуры газ будет оставаться насыщенным компонентом А.

Поскольку пары вещества А должны диффундировать к теплопередающей поверхности, процесс контролируется тепло- и массопереносом. В системе, содержащей другие конденсирующиеся компоненты (В, С и т.д.),каждый из этих компонентов начнет конденсироваться тогда, когда газ станет насыщен этим компонентом, и для него будет выполняться соотношение парциальных давлений, аналогичное pA = (pA)п.

Для определения температуры, до которой нужно охладить газ, чтобы достичь после обработки требуемое содержание компонента А, используются следующие уравнения:

(vA)г = (yA)г; (yA)г·Р = (pA)г,

где (vA)г - допустимая объемная доля компонента А в газовых выбросах; (yA)г - допустимая мольная доля компонента А в выбросах; Р – абсолютное парциальное давление газа; (pA)г - допустимое давление пара компонента A.

Необходимая температура газа представляет собой температуру, при которой давление пара компонента А равно величине (pA)г на кривой давления пара. В присутствии нескольких компонентов улавливание осуществляется по компоненту, требующему наиболее низкой температуры.

14. Термокаталитическая очистка газовых выбросов

Введение

Атмосферный воздух является самой важной жизнеобеспечивающей природной средой и представляет собой смесь газов и аэрозолей приземного слоя атмосферы, сложившуюся в ходе эволюции Земли, деятельности человека и находящуюся за пределами жилых, производственных и иных помещений.

Результаты экологических исследований, как в Украине, так и за рубежом, однозначно свидетельствуют о том, что загрязнение приземной атмосферы – самый мощный, постоянно действующий фактор воздействия на человека, пищевую цепь и окружающую среду. Атмосферный воздух имеет неограниченную емкость и играет роль наиболее подвижного, химически агрессивного и всепроникающего агента взаимодействия вблизи поверхности компонентов биосферы, гидросферы и литосферы.

В настоящее время атмосфера нуждается в очистки от антропогенных источников загрязнений.

Цель моей работы – рассмотреть термокаталитическую очистку газовых выбросов.

Термокаталитическая очистка

Термокаталитическая очистка – это окисление углеводородов в газовоздушной смеси до нетоксичных веществ (CO2 и H2O) в присутствии катализаторов.

Каталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей. Например:

Применение каталитических методов чаще всего ограничивается трудностью поиска и изготовления пригодных для длительной эксплуатации и достаточно дешевых катализаторов. Гетерогенно-каталитическое превращение газообразных примесей осуществляют в реакторе, загруженном твердым катализатором в виде пористых гранул, колец, шариков или блоков со структурой, близкой к сотовой. Химическое превращение происходит на развитой внутренней поверхности катализаторов, достигающей 1000 м2/г.

В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Обычно каталитическую активность проявляют твердые вещества с ионными или металлическими связями, обладающие сильными межатомными полями. Одно из основных требований, предъявляемых к катализатору - устойчивость его структуры в условиях реакции. Например, металлы не должны в процессе реакции превращаться в неактивные соединения.

Современные катализаторы обезвреживания характеризуются высокой активностью и селективностью, механической прочностью и устойчивостью к действию ядов и температур. Промышленные катализаторы, изготавливаемые в виде колец и блоков сотовой структуры, обладают малым гидродинамическим сопротивлением и высокой внешней удельной поверхностью.

Наибольшее распространение получили каталитические методы обезвреживания отходящих газов в неподвижном слое катализатора. Можно выделить два принципиально различных метода осуществления процесса газоочистки - в стационарном и в искусственно создаваемом нестационарном режимах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]