
- •1. Классификация процессов и аппаратов очистки газовых выбросов
- •3. Абсорбционная очистка газовых выбросов
- •4. Конструкции и принцип действия абсорберов
- •5. Отличительные особенности, принцип действия и основные характеристики аппаратов вида: насадочные абсорберы
- •6. Отличительные особенности, принципы действия и основные характеристики аппаратов типа тарельчатые абсорберы
- •7. Отличительные особенности, принципы действия и основные характеристики аппаратов вида: распыливающие абсорберы Введение
- •8. Адсорбционный метод очистки газов
- •10. Адсорберы периодического действия
- •12. Принцип конденсационной очистки
- •1) Стационарный метод
- •2) Нестационарный метод ( реверс-процесс)
- •15. Термическая обработка газовых выбросов
- •16. Установки термообезвреживания газовых выбросов
- •17. Оценка эффективности устройств для очистки газовых выбросов
3. Абсорбционная очистка газовых выбросов
Некоторые жидкости и твердые вещества при контакте с многокомпонентной газовой средой способны избирательно извлекать из нее отдельные ингредиенты и поглощать (сорбировать) их.
Абсорбция - поглощение газов или паров из газовых или парогазовых смесей жидкими поглотителями, называемыми абсорбентами. Возможность осуществления процесса абсорбции основывается на растворимости газов в жидкостях. Процесс абсорбции является избирательным и обратимым, что дает возможность применять его не только с целью получения растворов газов в жидкостях, но также и для разделения газовых или паровых смесей.
В последнем случае после избирательной абсорбции одного или нескольких компонентов из газовой или паровой смеси проводят десорбцию - выделение этих компонентов из жидкости - и таким образом осуществляют (круговой процесс).
Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСl, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители и др.).
Поглощение газа может происходить либо за счет его растворения в абсорбенте, либо в результате его химического взаимодействия с абсорбентом. В первом случае процесс называют физической абсорбцией, а во втором случае - хемосорбцией. Возможно также сочетание обоих механизмов процесса. Абсорбируемые компоненты газовой смеси называют абсорбтивом, а не абсорбируемые - инертом.
Абсорбентами служат индивидуальные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются: высокая абсорбционная способность, селективность, низкое давление пара, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции - также к компонентам газовой смеси), не токсичность, огне- и взрывобезопасность, доступность и не высокая стоимость.
При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.
Если растворимость газов при 0°С и парциальном давлении 101,3 кПа составляет сотни грамм на 1кг абсорбента, то такие пары называют хорошо растворимыми. Для удаления из технических выбросов таких газов, как NH3, НСl и HF, целесообразно применять в качестве абсорбента воду.
Нецелесообразно использовать воду для очистки выбросов с нерас- творимыми в ней органическими примесями. Подобные загрязнители как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества, такие как этаноламины и тяжелые предельные углеводороды (минеральные масла). До обработки органическим абсорбентом из отбросных газов необходимо удалить дисперсные примеси. Иначе абсорбент быстро загрязняется и становится отходом, практически не поддающимся очистке.
Органические абсорбенты должны иметь низкое давление насыщенных паров при температуре процесса. Растворители с недостаточно низкой упругостью паров будут интенсивно испаряться и загрязнять обрабатываемые газы. Кроме того, низкокипящий абсорбент сложно регенерировать, так как извлечь (десорбировать из него) уловленное вещество нагреванием невозможно.
На интенсивность перехода загрязнителя из газовой фазы в жидкую большое влияние оказывают температура и давление процесса, а также способ организации контакта фаз.
С ростом давления и снижением температуры скорость абсорбции увеличивается. Абсорбенты, работающие при отрицательных (по Цельсию) температурах, принято называть хладоносителями, а процесс абсорбции, протекающий в таких условиях - контактной конденсацией.
Сочетая абсорбцию с десорбцией, можно многократно использоватьпочти без потерь жидкий поглотитель (абсорбент) в замкнутом контуре аппаратов: абсорбер-десорбер-абсорбер (круговой процесс), выделяя погло-щенный компонент в чистом виде.
Различают физическую абсорбцию и хемосорбцию. При физическойабсорбции растворение газа в жидкости не сопровождается химической реакцией или, по крайней мере, влиянием этой реакции на скорость процесса можно пренебречь. Вследствие этого физическая абсорбция не сопровождается тепловым эффектом. Если в этом случае начальные потоки газа и жидкости незначительно различаются по температуре, то такую абсорбцию можно рассматривать как изотермическую.
На рис. 3.1. представлена принципиальная схема установки для абсорбции определенного компонента из газовой среды и последующего его выделения из абсорбента (десорбции).
Рис.3.1. Принципиальная схема установки для абсорбционнодесорбционного улавливания определенного компонента из газовой смеси:
1 - абсорбер;
2 - холодильник;
3 - десорбер;
4 - теплообменник.
Газовая смесь, содержащая извлекаемый из нее компонент, поступает в абсорбер, где происходит контакт с абсорбентом, который поглощает данный компонент. Газ, очищенный от компонента, удаляется (очищенный воздух может быть выброшен в атмосферу), а раствор поглотителя, содержащий абсорбированный компонент, поступает в теплообменник, где нагревается. Нагретый раствор насосом подается в десорбер, где из него выделяется (десорбируется) поглощенный компонент путем испарения в результате нагревания поглотителя паром. Поглотитель, освобожденный от компонента, поступает в теплообменник, где отдает теплоту абсорбенту при его противоточном движении в десорбер, а затем направляется в холодильник, пройдя который, снова поступает в абсорбер. Круг замкнулся. По такому циклу работает установка для абсорбционно-десорбционного улавливания определенных паров и газов из газовой смеси (из воздуха). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. При физической абсорбции (и в некоторых хемосорбционных процессах) регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрированно.
Показатели абсорбционной очистки: степень очистки и коэффициент массопередачи зависят от растворимости газа в абсорбенте, технологического режима в реакторе и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, т. е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. Абсорбционную очистку выбросов в атмосферу применяют как для извле-чения ценного компонента из газа, так и для санитарной очистки газа. Считают, что целесообразно применять абсорбцию, если концентрация данного компонента в газовом потоке составляет свыше 1 %.
Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям: 1) абсорбционная емкость, т. е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления; 2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции; 3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие коррозирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др.
Очистная аппаратура аналогична аппаратуре мокрого улавливания аэрозолей. Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидродинамического режима этих реакторов, работающих при скорости газа ?г = 0,02?0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки. Для очистки выбросов от газообразных и парообразных примесей применяют и интенсивную массообменную аппаратуру - пенные аппараты, безнасадочный форсуночный абсорбер, скруббер Вентури, работающие при более высоких скоростях газа. Пенные абсорберы работают при ?г = 1?4 м/с и обеспечивают сравнительно высокую скорость абсорбционно-десорбционных процессов; их габариты в несколько раз меньше, чем насадочных скрубберов. При достаточном числе ступеней очистки (многополочный пенный аппарат) достигаются высокие показатели глубины очистки: для некоторых процессов до 99,9%. Особенно перспективны для очистки газов от аэрозолей и вредных газообразных примесей пенные аппараты со стабилизатором пенного слоя. Они сравнительно просты по конструкции и работают в режиме высокой турбулентности при линейной скорости газа до 4-5 м/с. Примером безотходной абсорбционно-десорбционной циклической схемы может служить поглощение диоксида углерода из отходящих газов растворами моноэтаноламина с последующей регенерацией поглотителя при десорбции СО2. Установка безотходна, так как чистый диоксид углерода после сжижения передается потребителю в виде товарного продукта.
Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов.
Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие.объемы.
Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.