- •Оглавление
- •8.1.2. Организационная структура 104
- •1. Основные понятия
- •1.1. Система
- •1.2. Управление
- •1.3. Система управления
- •2.Назначение и цели асу тп
- •2.1.Назначение асу тп
- •3.1.2. Автоматическая система управления
- •3.2. По характеру решаемых задач
- •3.2.1. Асу агрегатом
- •3.2.1.1. Технологический объект управления
- •3.2.1.2. Автоматизированный технологический комплекс
- •3.2.2. Асу производством
- •3.2.3. Асу отраслью
- •3.3. По характеру протекания процессов во времени
- •3.3.1. Асу непрерывным процессом
- •3.3.2. Асу дискретным процессом
- •3.3.3. Асу непрерывно-дискретным процессом
- •3.4. По показателю информационной мощности
- •3.5. По степени функциональной развитости
- •3.6. По способу обработки информации
- •3.6.1. Аналоговые
- •3.6.2. Цифровые
- •3.6.3. Сравнение аналоговых и цифровых систем
- •3.7. По степени концентрации вычислительной мощности
- •3.7.1. Централизованные (сосредоточенные)
- •3.7.2. Децентрализованные (распределенные)
- •3.8. По характеру реакции на изменение режима и / или ситуации
- •3.8.1. Реакция с существенной задержкой во времени
- •4.1.4. Программное обеспечение
- •4.1.5. Организационное обеспечение асу тп
- •4.1.6. Оперативный персонал асу тп
- •4.2. Система как совокупность подсистем
- •4.2.1. Функциональные подсистемы
- •4.2.1.1.Функции подсистем
- •4.2.1.2. Функции управления
- •4.2.1.3. Информационные функции
- •4.2.1.4.Информационная подсистема
- •4.2.1.5.Управляющие функции
- •4.2.1.6. Подсистема автоматического регулирования
- •4.2.1.7. Подсистема логико-программного управления
- •4.2.1.8. Подсистема дистанционного управления
- •4.2.1.9. Подсистема технологических защит
- •4.2.1.10.Сервисные функции
- •4.2.1.11. Сервисная подсистема
- •4.3. Иерархическая структура
- •4.3.1. Нижний уровень
- •4.3.2. Средний уровень
- •4.3.3. Верхний уровень
- •4.4. Технологическая структура системы
- •4.5. Техническая структура
- •4.5.1. Средства интерфейса “оператор–система”
- •4.5.2.Средства сбора информации
- •4.5.3. Средства автоматического управления
- •4.5.4. Средства воздействия на процесс
- •4.6. Организационная структура
- •4.6.1. Распределение обязанностей
- •4.6.2. Посты управления
- •4.6.3. Приоритетность выполнения действий
- •4.6.3.1. Оперативный контур
- •4.6.3.2. Неоперативный контур
- •4.6.3.3. Размещение рабочих мест в посту управления
- •5. Надежность асу тп
- •5.1. Общие понятия
- •5.2. Оценка надежности асу тп
- •5.2.1.Надежность автоматизированных систем управления
- •5.3. Надежность аппаратуры и программного обеспечения
- •6. Технология полевой шины
- •6.1. Показатели ситуации
- •6.2. Технология полевой шины
- •6.2.1. Интеллектуальные полевые устройства
- •6.2.1.1. Основные положения
- •6.2.1.2. Технические особенности использования современных интеллектуальных датчиков
- •6.2.1.3. Экономические аспекты использования современных интеллектуальных датчиков
- •6.2.1.4. Структура интеллектуальных датчиков
- •6.2.1.5. Функции интеллектуальных датчиков
- •6.2.1.6. Информационные функции.
- •6.2.1.7. Функции конфигурирования.
- •6.2.1.8. Функции форматирования.
- •6.2.1.9. Функции самодиагностики.
- •6.2.1.10. Функции преобразования.
- •6.2.1.11. Управляющие функции.
- •6.2.2. Интеллектуальные датчики как часть системы контроля и управления
- •6.2.3. Распределение интеллекта
- •6.2.4. Коммуникативность
- •6.2.5. Методы реализации технологии
- •6.2.6. Конфигурирование
- •6.2.7. Типы полевых шин
- •6.2.8. Физический уровень
- •6.2.9. Технические средства
- •6.2.10. Промышленная сеть
- •6.2.11. Стандартная сеть с наrt-протоколом
- •6.2.12. Протокол can
- •6.2.13. Протоколы profibus
- •6.2.14. Стандартные сети Foundation Fieldbus.
- •6.2.15. Открытые системы
- •6.2.17.4. Надежность
- •6.2.18. Перспективы
- •6.2.19. Практические рекомендации
- •7. Требования к техническим средствам асу тп
- •7.1. Надежность
- •7.2. Функции
- •7.2.1. Функциональная полнота
- •7.2.2. Распределение функций
- •7.3. Пропускная способность каналов связи
- •7.4. Диапазоны
- •7.7.1.1. Климатические условия
- •7.7.1.2. Электромагнитная совместимость
- •7.7.1.3. Устойчивость к механическим воздействиям
- •7.7.1.4. Сейсмика
- •7.7.1.5. Искробезопасность и взрывозащита
- •7.7.2. Метрология
- •7.7.3. Маркетинг
- •7.7.3.1. Конкурентоспособность и рекламное обеспечение
- •7.7.3.2. Методическое обеспечение
- •8. Стадии создания системы
- •8.1.Организационно-юридические аспекты создания асу тп
- •8.1.1.Проблемы
- •8.1.2.Организационная структура
- •8.1.3.Саморегулируемые организации
- •8.1.4.Надзирающие организации
- •8.1.5.Обязанности Компании
- •8.1.5.1.Взаимодействие с сро
- •8.3. Проектирование асу тп
- •8.3.1. Нормативно-техническая документация
- •8.3.2.Формирование требований к асу
- •8.4. Разработка концепции асу
- •8.4.1. Технико-экономическое обоснование
- •8.5. Техническое задание
- •8.6. Расчет стоимости проекта
- •8.7. Выпуск проектной документации
- •8.7.1. Эскизный проект
- •8.7.2. Технический проект
- •8.7.3. Рабочая документация
- •8.7.4. Состав проектной документации
- •8.8. Сопровождение асу
- •8.9. Организации, участвующие в работах по созданию асу
- •8.10. Функциональная часть проекта
- •8.10.1. Разработка математической модели объекта
- •8.10.2. Разработка функциональной структуры
- •8.11. Сапр
- •9. Монтаж и наладка системы
- •9.1. Ввод асу в действие
- •9.2. Монтаж системы
- •9.2.1. Комплектация.
- •9.2.2. Правила монтажа.
- •9.2.3. Организация монтажных работ.
- •9.3. Наладка системы
- •9.3.1. Организация работ по наладке системы
- •9.3.2. Идентификация объекта управления
- •9.3.3. Наладка статическая и динамическая
- •9.3.4. Наладка средств вычислительной техники
- •9.3.5. Сдача системы в опытно-промышленную и промышленную эксплуатацию
6.2.13. Протоколы profibus
Все три вида протокола используют общий канальный уровень (второй уровень по модели OSI), а протоколы PROFIBUS DP и PROFIBUS FMS имеют одинаковые первый (физический) и второй (канальный) уровни протокола.
Характеристики сети PROFIBUS-DP.
Сеть предназначена для связи выносных блоков ввода/вывода и интеллектуальных приборов с контроллерами.
Ниже перечислены основные характеристики сети.
Физически передача данных в сети осуществляется через порт RS-485 и экранированную витую пару, либо через оптоволоконный кабель.
Сеть обеспечивает любые виды соединений: шина, дерево, звезда, кольцо.
Метод доступа к сети: ведущий/ведомый. В сети возможно наличие нескольких ведущих устройств; при этом либо каждое ведущее устройство обслуживает свои ведомые, либо одно из них организует работу ведомых, а другие диагностируют, конфигурируют и производят другие фоновые операции. Записывать данные в ведомое устройство может только одно ведущее устройство. Сами ведущие узлы общаются между собою с помощью маркера.
Общее число устройств на сети до 126, из которых 32 узла могут быть ведущими.
Скорость передачи данных на витой паре варьируется от 9,6 кбит/с до 1,5 Мбита/с. При длине витой пары 200 м скорость максимальна 1,5 Мбита/с.
Длина сети на витой паре до 1,2 км или до 4,8 км с повторителями. Длина сети на оптоволокне до 23 км.
Основа работы протокола - циклический опрос ведомых устройств; кроме того, существуют ациклические функции диагностики, конфигурирования диапазонов измерения и т. п.
Передаваемые устройствами диагностические сообщения имеют три уровня иерархии: диагностика всего устройства (например, упало напряжение питания), диагностика модуля устройства (например, отказал 8-ми канальный цифровой модуль выходных сигналов), диагностика канала (например, в канале А модуля Б не проходит сигнал).
В сети реализована коррекция ошибок: в любой посылке данных 3 ошибочных бита будут обнаружены, а 1 ошибочный бит может быть восстановлен.
В каждом сеансе связи ведомое устройство может передать до 246 байт информации, обычно передается 32 байта.
При скорости 1,5 Мбит/с передача 512 бит данных, распределенных между 32 устройствами, занимает 6 мс; та же передача при скорости 0,5 Мбит/с занимает 18 мс.
Характеристики сети PROFIBUS -РА.
Специализированный протокол для передачи данных от выносных блоков ввода/вывода и интеллектуальных приборов к контроллерам во взрывоопасных средах. По протоколу канального уровня PROFIBUS РА полностью идентичен PROFIBUS DP, но он имеет иную физическую реализацию: безопасное низковольтное исполнение. Коммутация устройств реализуется на одной витой паре, которая одновременно используется для информационного обмена и для питания устройств. Основные области применения этого протокола - предприятия химии, нефтехимии, нефтепереработки.
Скорость передачи данных на витой паре до 31 Кбит/с.
6.2.14. Стандартные сети Foundation Fieldbus.
Сети образованы двумя ведущими американскими ассоциациями ISP и WorldFIP, которые объединились с другими фирмами в 1994 году в ассоциацию Fieldbus Foundation. Эта ассоциация опубликовала и поддерживает стандарт на сети и производит сертификацию устройств на соответствие стандарту. Сейчас в ассоциацию входят более 100 крупнейших компаний, которые представляют порядка 90% производителей средств и услуг в области автоматизации.
Нацеленность сетей - нижний уровень распределенной системы автоматизации (связь контроллеров с выносными блоками ввода/вывода и с интеллектуальными приборами) при учете специфики работы приборов во взрывоопасной среде.
Для более полного и рационального использования все возрастающей мощности микропроцессоров, встраиваемых в интеллектуальные приборы, разработана идеология Fieldbus Foundation, которая ставит своей целью перенос типовых алгоритмов переработки измерительной информации (фильтрации, масштабирования, линериализации и т. п.), регулирования (стабилизации, слежения, каскадного управления и т. п.), логического управления (пуска, останова, блокировки группы механизмов и т. п.) на самый нижний уровень управления: уровень интеллектуальных датчиков и исполнительных механизмов. Для реализации этой идеологии разработан новый по возможностям и параметрам стандарт на полевую сеть.
Основная особенность стандарта, отличающая построенные по нему сети от всех других распространенных полевых сетей, - разработка условий работы и обмена информацией между приборами в сети при учете, что каждый прибор в сети, кроме обычных функций аналого-цифрового или цифро-аналогового преобразований может производить типовые функции контроля и управления.
Основной вариант сети - Foundation Fieldbus Н1 (FF Н1); он реализует безопасную работу приборов во взрывоопасной среде. Кроме него существует вариант Foundation Fieldbus Н2 (FF Н2), в котором специфика работы приборов во взрывоопасной среде не учитывается.
Характеристики сети FF Н1.
Ниже описываются основные свойства и характеристики сети, обозначаемой как FF Н1.
Топология сети - шина или дерево.
Физическая среда - витая пара.
Длина линии передачи - 1,9 км.
Скорость передачи данных - 31,25 кбита/с.
Число подключаемых к сети устройств - до 32.
Сеть используется также для передачи питания от контроллера к приборам, подключенным к сети.
Протокол сети использует три уровня по модели OSI: первый (физический уровень), второй (канальный уровень) и седьмой прикладной уровень). Кроме того, стандарт Foundation Fieldbus особое внимание обращает на пользовательский уровень (он как бы над прикладным уровнем), на котором фиксируется ряд важных функций и правил.
Метод доступа к сети - маркер. Активный планировщик связей (LAS – Link Active Scheduler), работающий как арбитр на сети, поддерживает плотный временной график периодических собщений. Он же обеспечивает быстрый доступ к сети для высокоприоритетных асинхронных событий (сеть работает с приоритетными сообщениями). Управление сетью может быть распределено между несколькими активными планировщиками связей; они могут резервировать друг друга.
Периодический цикл передачи информации с учетом обработки в устройствах контуров управления составляет 50 мс.
Введенный в стандарт FF Н1 пользовательский уровень (отсутствующий в других стандартах и в модели OSI) имеет несколько важнейших черт.
Он определяет связи, с помощью которых пользователь может взаимодействовать с приборами через серию так называемых блоков, причем удобнее и скорее, чем с запросами по отдельным точкам. Пользовательский уровень может использовать три типа блоков:
-блоки приборов - описывают такие характеристики приборов как имя, производитель, номер серии и т. п.;
-блоки функций - определяют работу приборов по вводу сигналов, контролю и управлению, выводу сигналов. Всего стандарт определяет 10 базовых функциональных блоков: аналоговый вход, аналоговый выход, смещение, переключатель управления, дискретный вход, дискретный выход, ручной загрузчик, регулятор ПД, регулятор ПИД, регулятор отношения. Любые другие функциональные блоки могут быть определены конкретными производителями приборов и согласованы с ассоциацией Fieldbus Foundation ;
-блоки преобразователей - расщепляют отдельные блоки функций на чтение/запись локальных входных/выходных данных.
Важно подчеркнуть, что функциональные блоки могут при их соответствующем соединении друг с другом реализовывать простейшие цепи управления как в отдельном приборе, так и распределенно через сеть в нескольких приборах.
Вторая важнейшая черта пользовательского уровня стандарта FF Н1 - описатели приборов (DD-Device Descriptions). DD определяет стандартное описание функций, которые можно реализовывать в приборе. Используя DD оператор может взаимодействовать с прибором: конфигурировать калибровку, менять параметры, диагностировать работу и т. п.. Механизм DD дает оператору возможность полностью определять, конкретизировать и модифицировать свойства прибора.
Для работы с функциональными блоками в приборе используется специальный язык описания устройств DDL-Device Descriptions Language), который специфицирован в ассоциации Fieldbus Foundation. Он описывает функциональные блоки, используется для доступа к информации в приборе и для определения дополнительных характеристик, которые можно добавить к функциональному блоку. Используя описатели приборов DD, язык DDL позволяет оператору составлять алгоритм работы прибора и полностью контролировать его работу.
Аналогично НАRТ протоколу в полевой сети FF Н1 используется понятие "статус", которое каждый цикл передается каждым прибором по сети вместе с его данными. Статус определяет оперативное состояние прибора: нормальный последовательный статус, когда данные от него могут быть использованы для вычислений и управления; нормальный непоследовательный статус, когда данные от него корректны, но с прибором связана какая-то тревога: неопределенный статус, когда данные не полностью корректны, но все же могут быть использованы; плохой статус, когда данные не могут быть использованы. Каждое значение статуса имеет 16 различных под статусов, которые конкретизируют и диагностируют имеющийся статус, т. е. определяют уровень самодиагностики приборов FF Н1. С помощью DD можно добавить дополнительные диагностические функции.
Характеристики сети FF Н2.
Вариант сети FF Н2 отличается от рассмотренного варианта FF Н1 следующими характеристиками:
-топология сети - шина;
-физическая среда - витая пара или кабель;
-длина линии передачи - 0,75 км;
-скорость передачи данных - 1,0 или 2,5 Мбита/с;
-питание приборов через шину не производится;
-сеть не предназначена для работы во взрывоопасной среде. Остальные характеристики аналогичны сети FF Н1.
