- •1. Основні етапи розвитку охорони праці
- •2. Предмет, структура, зміст, мета дисципліни "Основи охорони праці", її зв'язок з іншими дисциплінами
- •3. Основні поняття в галузі охорони праці. Основні терміни та визначення.
- •4. Основні законодавчі акти про охорону праці
- •5. Основні положення Закону України "Про охорону праці".
- •6. Основні принципи державної політики в галузі охорони праці.
- •8. Основні органи фінансування охорони праці.
- •9. Права, обов'язки та відповідальність працівника
- •10. Обов'язки роботодавців
- •11 . Стимулювання охорони праці
- •12. Охорона праці жінок.
- •13. Охорона праці неповнолітніх.
- •14. Державні нормативні акти про охорону праці
- •15. Організація охорони праці підприємств.
- •16.Види відповідальності за порушення законодавства про охорону праці
- •17. Завдання та повноваження Кабміну України в галузі охорони праці
- •18. Органи державного управління охороною праці, їх компетенція та повноваження
- •19. Основні завдання і функції системи управління охороною праці
- •20. Планування робіт
- •21. І 27.Державний нагляд і громадський контроль за охороною праці. Органи державного нагляду за охороною праці.
- •23. Комісія з питань охорони праці підприємства та її завдання.
- •24. Організація навчання з питань охорони праці.
- •25.Види інструктажів. Види інструктажів з охорони праці. 26. Порядок проведення інструктажів з питань охорони праці для працівників.
- •32. Причини та профілактика виробничого травматизму.
- •33. Роль сигнальних кольорів та знаків безпеки на підприємствах.
- •34. Положення Закону України "Про забезпечення санітарного та епідемічного благополуччя населення".
- •37. Вплив мікроклімату у виробничих приміщеннях на організм людини.
- •38. Створення оптимальних метеорологічних умов.У виробничих приміщеннях є складною задачею, вирішити яку можна наступними заходами та засобами:
- •39. Вплив шкідливих речовин на організм людини.
- •41. Класифікація систем вентиляції
- •42. Основні елементи системи опалення
- •43. Виробниче освітлення як фактор впливу на організм людини в процесі праці
- •44. Кількісні та якісні показники освітлення виробничих приміщень
- •45. Види виробничого освітлення
- •46. Загальна характеристика вібрації
- •47. Методи боротьби з вібрацією
- •48. Виробничий шум та наслідки його шкідливої дії
- •49. Дія шуму на організм людини
- •50. Методи та засоби захисту від шуму
- •51. Інфразвук
- •52. Ультразвукові коливання
- •53. Іонізуюче випромінювання та їх класифікація
- •54. Вплив іонізуючих випромінювань на організм людини
- •55. Захист від іонізуючих випромінювань
- •56. Електромагнітні поля як небезпечний екологічний фактор
- •57. Вплив електромагнітних полів на живі організми
- •58. Захисні заходи від електромагнітних полів
- •59. Характеристика та склад засобів індивідуального захисту
- •60. Санітарно-гігієнічні вимоги до розміщення підприємств
- •63.Основні вимоги до допоміжних приміщень
- •64. Основні вимоги безпеки до технологічного обладнання
- •65.Безпечність технологічного процесу
- •66.Вимоги безпеки щодо розташування виробничого обладнання
- •67. Безпечність робочих місць.
- •68.Класифікаія посудин, що працюють під високим тиском
- •69.Наслідки експлуатації систем, що працюють під тиском.
- •70.Вимоги безпеки до посудин, що працюють під тиском
- •71.Характеристика запірно-регулювальної арматури.
- •72.Прилади для вимірювання температури та тиску.
- •73.Запобігання підвищеню тиску.
- •74.Покажчики рівня рідини
- •75.Реєстрація посудин
- •76.Технычне посвідчення посудин
- •77. Безпека при експлуатації котельних установ.
- •78. Безпека під час експлуатації компресорних установок
- •79.Безпека під час експлуатації трубопроводів
- •81. Експлуатація балонів.
- •83. Заходи безпеки при вантажно-розвантажувальних роботах.
- •84. Особливість підіймально-транспортних машин.
- •85. Електричний струм та його дія на організм людини.
- •86. Характеристика місцевих електротравм.
- •87. Характеристика електричних ударів.
- •88. Причини летальних наслідків від дії електричного струму.
- •89. Види струму.
- •90. Частота струму.
- •91 .Класифікація приміщень за ступенем ураження електричним струмом.
- •92. Основні причини електротравматизму.
- •93. Електрозахисні засоби та їх класифікація.
- •94. Основні групи з електробезпеки обслуговуючого персоналу.
- •95. Надання першої допомоги при ураження електричним струмом.
- •96. Основні нормативні документи в галузі пожежної безпеки.
- •97. Пожежа та пов'язані з нею фактори.
- •98. Основні причини пожеж.
- •99. Теоретичні основи горіння.
- •100. Різновиди горіння.
- •103. Вибухонебезпечні та пожежонебезпечні зони
- •104. Характеристика систем попередження пожеж.
- •105. Основні напрямки систем попередження пожеж.
- •106. Розряди речовин та матеріалів за категорією небезпеки.
- •107. Система протипожежного захисту
- •108. Пожежна безпека будівель і споруд.
- •109. Евакуація людей із будівель та приміщень.
- •110. Способи пожежогасіння.
- •111. Засоби пожежогасіння.
- •112. Характеристика вуглекислотних вогнегасників.
- •113. Характеристика хімічно-пінних вогнегасників та 114. Характеристика повітряно-пінних вогнегасників.
- •115. Характеристика порошкових вогнегасників.
- •117. Завдання органів Державного пожежного нагляду.
- •118. Основні права державних інспекторів з пожежного нагляду
- •119. Завдання та види пожежної охорони.
- •120. Порядок дій у разі пожежі.
72.Прилади для вимірювання температури та тиску.
Вимі́рювання ти́ску полягає у встановленні значення тиску у рідкому чи газоподібному середовищі. Це необхідно для керування технологічними процесами та забезпечення безпеки виробництва. Крім цього, цей параметр використовується при непрямих вимірюваннях інших технологічних параметрів: рівня, витрати, температури, густини тощо. В системі СІ за одиницю тиску береться паскаль (Па).У більшості випадків первинні перетворювачі тиску мають неелектричний вихідний сигнал у вигляді сили або переміщення і об'єднані в один блок з вимірювальним приладом. Якщо результати вимірювань необхідно передавати на відстань, то застосовують проміжне перетворення цього неелектричного сигналу в уніфікований електричний або пневматичний. При цьому первинний і проміжний перетворювачі об'єднують в один вимірювальний перетворювач Для вимірювання тиску використовують власне манометри та його різновиди: вакуумметри, мановакуумметри, дифманометри, а також, напороміри, тягоміри, тягонапороміри, датчики тиску, барометри та ін.Часто назва манометр використовується як синонім для будь-якого приладу для вимірювання тиску.
Класифікація
Прилади для вимірювання тиску відрізняються принципом дії. За принципом перетворення величини тиску у сигнал про вимірювану величину або за типом давча тиску прилади поділяються на:гравітаційні, де використовується сила гравітації для прямого вимірювання тиску. Прикладом може бути датчик тиску у формі U-подібної трубки (див. рис.). Такий прилад був вперше використаний Х.Гюйгенсом у 1661 році. Замість стовпа рідини в якості противаги іноді використовується ртуть. Діапазон вимірюваного тиску для U-подібних трубчастих манометрів становить: МПа до 0,1 МПа.пружинні або деформаційні, де про вимірюваний тиск судять за мірою деформації пружного елементу, що відбувається під тиском. Як пружний елемент можуть використовуватися: трубка Бурдона — датчики виконано у вигляді вигнутої по дузі кола (зазвичай на кут близько 250°) трубки, заповненої рідиною. Під впливом прикладеного тиску труба випрямляється. Стрілка манометра переміщається пропорційно деформуванню трубки. При вимірюванні високих тисків трубка виконується гвинтовою або спіральною. Діапазон вимірювання таких пристроїв: від 10 Па до 1000 МПа;пружна мембрана — працює аналогічно до трубки Бурдона, але в цьому випадку чутливим елементом є мембрана, деформація якої прямо пропорційна прикладеному тиску. Діапазон вимірюваних тисків: від 0,0016 МПа до 4 МПа;
сильфон — датчик має вигляд тонкостінної металевої трубки або камери з гофрованою (хвилеподібною) бічною поверхнею, зміна довжини якої із зміною тиску середовища в камері свідчить про величину тиску. Діапазон вимірюваних тисків: від 0,1 МПа до 60 МПа.електронні, де здійснюється вимірювання електричних величин, таких як електричний опір, індуктивність, резонансна частота, у які перетворюють безпосередньо значення тиску з використанням відповідних датчиків тиску, котрі дуже часто використовуються в системах автоматизації.
В даний час в промисловості, на додаток до традиційних засобів вимірювання тиску, використовувати складніші системи (механічні або електронні). Перевагою електронних пристроїв полягає в наданні інформації в цифровому вигляді і можливість прямої взаємодії з мікропроцесорними системами керування. Перевага класичних датчиків є ціна і надійність.
Для визначення температури повітря в виробничих приміщеннях використовуються звичайні ртутні і спиртові термометри, термопари або термоанемометри. Так, наприклад, термометр метеорологічний скляний ТМ-6 має діапазон виміру від -ЗО до +50 °С, похибка вимірювання 0,2 °С. Термоанемометр ЭА-2м визначає температуру повітря в межах від 10 до 60 °С, а термоанемометр ТА-8м в межах від 0 °С до 60 °С. Найчастіше температуру повітря визначають за сухим термометром психрометра .
В приміщеннях, де є значні джерела променистого тепла, для більш точного визначення фактичної температури повітря застосовується подвійний термометр, який складається з двох термометрів - один з зачорненим термобалоном, а другий - з посрібленим. Посріблений віддзеркалює променисте тепло і реагує на конвек-тивне, а зачорнений реагує на променисте і на конвективне.
При користуванні подвійним термометром фактична температура повітря t визначається за виразом:
t = tc-K(t4-tc),°C, [1]
де tc - покази термометра з посрібленим термобалоном, °С;
t4 - покази термометра з зачорненим термобалоном, °С;
К - константа приладу (наводиться у паспорті, або в інструкції до приладу).
Швидкість руху повітря в приміщеннях вимірюють прила-дами-анемометрами: термоанемометрами, анемометрами чашковими (рис 10.2, а), індукційними (рис 10.2, б) та крильчастими (рис. 10.2, в).
крильчатка, 2 - перемикач пуску та зупинки
При вимірюванні в приміщеннях малих швидкостей руху повітря можна користуватися кататермометром (від 0,02 до 1 м/с). Це спиртовий термометр, шкала якого поділена на три градуси (35-38 °С). Для визначення швидкості руху кататермометр підігрівають у воді з температурою 65-75 °С до того моменту, коли спирт із термобало-на заповнить капіляр і підніметься до половини верхнього розширення. Після цього кататермометр виймають з води, протирають насухо і підвішують в зоні, де треба визначити швидкість руху повітря. За секундоміром фіксують час охолодження приладу від температури 38°С до температури 35°С. По таблиці або по графіку, що додається до приладу, визначають фактичну швидкість руху повітря.
Відносну вологість повітря визначають стаціонарними або аспі-раційними психрометрами (рис 10.1, а,б). Психрометри складаються з сухого та вологого термометрів. Резервуар вологого термометра знаходиться у зволоженому середовищі. По різниці показників термометрів, користуючись психрометричною таблицею, визначають відносну вологість.
Для реєстрації атмосферного тиску застосовують барометри. Найбільш поширеними в промисловості і в побуті барометрами є анероїди. При необхідності реєстрації параметрів мікроклімату протягом часу використовують самопишучі прилади: термографи (рис. 10.3, а), гігрографи (рис. 10.3, б), барографи та ін.
1 - стрічка-діаграма на барабані з годинниковим механізмом, 2 - перо,
З - біметалічна пластина, 4 - пасмо волосся
Відносну вологість можна визначати приладами - гігрометрами. Принцип їх дії базується на здатності деяких матеріалів змінювати свою пружність в залежності від вологості повітря. Цю здатність має людське і тваринне волосся, натуральна шкіра, деякі синтетичні матеріали. Промисловістю випускається гігрометр сорбційний типу ГС-210, який вимірює відносну вологість у межах 15-100% і має похибку ±3%.
Подібні прилади випускаються в деяких країнах: гігрометр Yenway (Англія); гігрометр Hygtotest-6200 (Німеччина).
В приміщеннях зі значним надходженням тепла для визначення енергетичної освітленості, що створюється за рахунок нагрітих поверхонь обладнання, опалювальних та освітлювальних приладів, сонячного випромінювання, що проникає крізь віконні прорізи, застосовують прилади: радіометри (РОТС-11), спектро-радіометри (СПР) та інспекторські дозиметри (ДОИ-1).
Вони вимірюють поверхневу щільність потоку теплової енергії, Вт/м2.
Для визначення температури нагрітих поверхонь вживаються контактні термометри (ЭТП-И), термоперетворювачі опору (ТХК, ММТ) та ін.
Відносна вологість ф на практиці найчастіше визначається за психрометричною таблицею за показниками психрометра. Для цього треба знати різницю між температурами сухого tc й вологого te термометрів, тобто М = tc-te і на перетині ліній М і tc знаходиться значення ф, %. Більш точно відносну вологість можна розрахувати за психрометричною формулою:
Ф = ^^ Ю0%, (10.2)
Рс.нас.
Де Рр.нас і Рошс ~ парціальний тиск водяної пари при насиченні повітря вологою при температурах відповідно вологого термометра, що відповідає температурі точки роси і сухого термометра;
А = 0,000677 - психрометричний коефіцієнт аспіраційного психрометра.
Pg - барометричний тиск повітря, мм рт. ст.
Відносну вологість можна також легко визначити по діаграмі стану вологого повітря (І - d, або 1-х діаграма).
Після визначення фактичних значень параметрів мікроклімату їх порівнюють з нормативними значеннями. При їх розбіжності вживають заходів по нормалізації фактичних параметрів.
10.4. Заходи щодо нормалізації мікроклімату
Найбільш частими причинами відхилення параметрів мікроклімату від нормативних є надходження надлишкового тепла в повітря виробничого приміщення, або водяної пари від працюючого обладнання чи інших джерел випаровування.
Заходи захисту від тепловипромінювань можна поділити на чотири групи:
а) усунення джерела тепла;
б) захищення від тепловипромінювання;
в) полегшення тепловіддачі від тіла людини в навколишнє сере
довище;
г) індивідуальний захист від теплового впливу.
Усунути джерело тепловиділення можна зміною технологічного процесу, наприклад, заміною пічного обігріву на електричний, заміною розмірів тепловипромінюючих поверхонь та ін. Захистити виробниче середовище від надмірного радіаційного та конвективного тепла, що поступає від нагрітих поверхонь обладнання, можна за рахунок теплоізоляції цих поверхонь. В приміщеннях, де є можливість ураження людини електричним струмом і температура повітря досягає ЗО °С і вище (приміщення особливо небезпечні і підвищеної небезпеки по класифікації Правила будови електроустановок - ПБЕ), температура на поверхні теплоізоляції не допускається більше 45 С. З точки зору техніки безпеки, щоб уникнути опіків людини, температура гарячих поверхонь у виробничій зоні дії працюючих не повинна перевищувати 45 °С.
Захист від прямої дії теплового випромінювання здійснюється екрануванням - встановленням термічного опору на шляху теплового потоку. Екрани досить різноманітні, за принципом дії бувають поглинаючими і відбиваючими променеве тепло. Вони можуть бути стаціонарними і пересувними. Екрани захищають людину не тільки від теплових променів, а й оберігають від дії іскор і розжарених та гарячих бризок, виплесків рідин та викидів шлаків та окалини.
Для зменшення вологості у виробничих приміщеннях слід уникати технологічних процесів з відкритими поверхнями випаровування рідини. Технологічне обладнання повинно бути герметизоване, а для видалення пари - обладнане витяжками. Як засіб видалення вологи із повітря приміщення використовується вентиляція. В приміщеннях, де діють оптимальні норми мікроклімату, слід встановлювати апарати для кондиціювання повітря.
Полегшенню тепловіддачі від тіла людини сприяє підвищення швидкості руху повітря, що омиває тіло. Здійснюється це за допомогою вентиляційних систем.
При необхідності виконання робіт в зоні підвищеної температури повітря або в гарячих реактивних зонах обладнання (ремонт топочних камер, котлів, печів, сушарок та ін.) користуються засобами індивідуального захисту від інфрачервоних випромінювань - термозахисним одягом, ізолюючими апаратами органів дихання, спеціальними рукавичками, касками та ін.
