- •Классификация лит сплавов и требования к ним
- •2. Литейные чугуны
- •3. Литейные свойства сплавов и их роль в формировании качественных отливок.
- •4. Понятие о степени эвтектичности и углеродном эквиваленте чугунов.
- •5.Графит в чугуне
- •6. Графитизация чугуна.
- •7. Классификация гипотез о природе зародышей графита, определяющих формообразование графита.
- •9. Серый чугун с пластинчатым графитом
- •10. Легированные чугуны
- •11.Ковкий чугун
- •12.Особенности структуры и свойства синтетических чугунов.
- •13.Литейные стали и их классификация.
- •14.Углеродистая литейная сталь. Классификация, маркировка. Механические свойства, область применения.
- •15. Легированные конструкционные литейные стали
- •16.Хромоникелевые жаропрочные стали аустенитного класса.
- •17. Влияние легирующих элементов на св-ва алюмин-х сплавов
- •18.Металлургический процесс плавки чугуна в вагранке.
- •19. Влияние легирующих элементов на св-ва Mg сплавов
- •20. Получение чугуна дуплекс-процессом.
- •20. Получение чугуна дуплекс процессом.
- •21. Технология получения высокопрочного чугуна с шаровидным графитом
- •22.Шихтовые материалы при плавке стали
- •23. Алюминиевые сплавы
- •24. Литейные алюминиевые сплавы на основе Al-Si. Механические и литейные свойства, область применения.
- •25. Поршневые литейные алюминиевые сплавы.
- •26. Жаропрочные литейные алюминиевые сплавы.
- •27. Раскисление стали под белым шлаком.
- •28. Литейные магниевые сплавы на основе системы Mg-Zn-Zr. Механические и литейные свойства, области применения.
- •29. Литейные магниевые сплавы на основе системы Mg-Al-Zn.
- •30. Технология модифицирования алюминиевых сплавов.
- •31. Обессеривание стали.
- •32. Окислительный период при выплавке стали.
- •33. Плавка стали в эл. Дуговой печи. Основные стадии процесса.
- •34. Получение чугуна дуплекс-процессом.
- •35. Неадсорбционные методы рафинирования алюминиевых сплавов: ультразвуком, вакуумом.
- •36. Рафинирование магниевых сплавов.
- •37. Рафинирование алюминиевых сплавов флюсами.
- •38. Шихтовые материалы при плавке алюминиевых сплавов.
- •39. Рафинирование алюминиевых сплавов инертными газами.
- •40. Плавка магниевых сплавов. Особенности процесса.
- •41. Рафинирование алюминиевых сплавов хлористыми солями.
- •42. Окисление углерода при выплавке стали.
- •43. Расчет шихты при выплавке стали.
- •44. Расчет шихты при выплавке чугуна.
- •45. Шихтовые материалы при плавке магниевых сплавов.
- •46. Модифицирование магниевых сплавов перегревом.
- •47. Флюсы при плавке магниевых сплавов.
- •48. Особенности разливки магниевых сплавов и их защиты от окисления.
- •49. Модифицирование магниевых сплавов углерод содержащими добавками.
- •50. Плавка алюминиевых сплавов. Особенности процесса.
- •44. Расчет шихты при выплавке чугунов.
- •43. Расчет шихты при выплавке стали.
- •40. Плавка магниевых сплавов. Особенности процесса.
7. Классификация гипотез о природе зародышей графита, определяющих формообразование графита.
основные гипотезы формообразования графита:
теория газовых пузырьков.
Суть: графит выделяется в пузырьках магния, затем под давлением заполняет полость до центра и продолжает расти, увеличиваясь и сохраняя форму шарика. Согласно этой теории, пузырьки могут формироваться за счет паров магния, водорода и других газов.
“-“ теории: а)не указывает на то, какая часть магния находится в пузырьках в том случае, когда шаровидный графит образуется в чугуне, содержащем 0,04-0,3% Mg, и почему пузырьки не уменьшают плотность чугуна. Расчет показывает, что с выделением 0,01 % Mg в виде пузырьков существенно снижается плотность чугуна (на несколько процентов).б) шаровидный графит кристаллизуется в чугуне, находящемся под давлением, в условиях, когда пузырьков магния не должно быть.в) не учитывает закономерностей роста кристаллов. г) Эта теория не подкреплена экспериментами и не объясняет образования других форм графита, в частности пластинчатой.
Карбидная теория .
Эта теория вообще не объясняет образования формы графита. Не объясняет она и образования шаровидного графита в чистых Fe-Si-C сплавах, не обоснована термодинамическими расчетами, не имеет экспериментальных доказательств. Карбидная теория, как и пузырьковая, совершенно не учитывает достижений науки в области кристаллизации.
Теория поверхностного натяжения
Согласно теории увеличение поверхностного натяжения по термодинамическим требованиям должно приводить к получению шаровидных форм, характеризующихся минимальной поверхностной энергией. Обязательным условием кристаллизации шаровидного графита, согласно этой теории, является переохлаждение чугуна.
“-“ теории: а) теория не объясняет образования пластинчатого графита в чугуне при высоком поверхностном натяжении расплава. Б) Теория не учитывает внутреннего строения графита. В) Не объясняет она образования других форм графита.
теория, учитывающая рафинирование чугуна при модифицировании и самодиффузионные процессы.
Суть: при модифицировании расплав очищается от серы, кислорода и других элементов и происходит равномерная диффузия вакансий к графиту, лимитирующая процесс графитизации и рост полости для графита. Графит же занимает образующуюся из вакансий полость и приобретает форму полости.
“-“ теории: а) этой теории не учитываются свойства графита и их проявления при кристаллизации.
Дислокационная теория
Суть: роль модифицирования и модифицирующих элементов заключается в очистке базисных граней кристалла от серы, кислорода и других поверхностно-активных элементов, сдерживающих рост спиральных выступов.
Теория межфазной энергии
Согласно этим представлениям скорость роста грани кристалла гра фита определяется величиной межфазной энергии на этой грани. Величина межфазной энергии определяется природой грани кристалла графита и наличием на ней адсорбированных поверхностно-активных элементов. Согласно этим исследованиям графит шаровидной формы кристаллизуется тогда, когда межфазное натяжение и межфазная энергия базисной грани графита с расплавом меньше, чем межфазная энергия призменной грани при одновременно высоком поверхностном натяжении чугуна.
