
- •Змістовий модуль III
- •1. Що таке генератор? За якими ознаками можна класифікувати генератори?
- •2. Якої найвищої стабільності (за порядком величини) можна досягти, використовуючи кварцову стабілізацію?
- •3. Чому на низьких (звукових) частотах краще застосовувати rc- автогенератори?
- •4. В чому полягає ідея створення rc- автогенератора?
- •5. Яким вимогам має задовольняти чотириполюсник зворотного зв’язку в rc- автогенераторі?
- •7. Чому форма коливань, генерованих rc-автогенераторами, звичайно відрізняється від гармонічної? Що треба робити щоб наблизитись до гармонічної форми генерованих коливань?
- •8. Навіщо в rc-автогенераторі з мостом Віна потрібне коло негативного зворотного зв’язку RззR0?
- •9. Навіщо для покращення форми генерованих коливань в rc-автогенераторі з мостом Віна послідовно з резистором r0 вмикають лампочку розжарення?
- •10. Чому навіть при повністю симетричній схемі мультивібратор не може перебувати в симетричному режимі?
- •11. Яким процесом визначається час перебування одного з транзисторів (наприклад, vt1) в закритому стані? Оцініть цей час.
- •13. Чому передній фронт імпульсів колекторної напруги має закруглену форму, тоді як задній фронт різкий?
- •14. Чим можна пояснити невеликий позитивний заряд напруги uб, який з’являється в момент відкривання транзистора? Чим визначається тривалість цього викиду?
- •15. Чи зможе мультивібратор працювати, якщо не буде виконуватись умова насичення відкритого транзистора?
- •16. Чому в мультивібраторі не вдається одержати імпульси з високою шпаруватістю?
- •17. Чому у мультивібраторах не рекомендується брати великий запас для виконання умови насичення транзистора?
- •18. Чи можна вдосконалити мультивібратор, щоб і передній і задній фронти генерованих ним імпульсів були різкими?
- •19. Чому в очікувальному мультивібраторі з емітерним зв’язком передній фронт вихідного імпульсу різкий, а не закруглений як у звичайного мультивібратора з емітерно-базовими зв’язками?
- •20. Чим визначається проміжок часу після закінчення вихідного імпульсу, коли очікувальний мультивібратор з емітерним зв’язком стане знову придатним для спрацювання від наступного пускового імпульсу?
- •21. Чому схема симетричного тригера не може перебувати в симетричному режимі?
- •22. Чи може функціонувати тригер, якщо його відкритий транзистор не перебуватиме в режимі насичення?
- •23. Чому для побудови тригера бажано застосувати кремнієві, а не германієві транзистори?
- •24. Для чого у тригері рекомендується шунтувати опір зв’язку r1 невеликою ємністю?
- •25. Чому для керування тригером краще подавати позитивний імпульс на базу закритого транзистора, а не негативний - на базу відкритого?
- •26. Поясніть, чому тригер називають елементом електронної пам’яті.
- •27. Чому тригер Шмідта називають бістабільним?
- •28. З якою метою застосовують тригери Шмідта?
- •Змістовий модуль IV
- •1. В чому полягають принципи аналогового та цифрового подання інформації?
- •2. Наведіть приклади аналогового та цифрового зображення величин. Проаналізуйте переваги та недоліки кожного.
- •3. Детально опишіть алгоритм переходу від аналогової форми подання інформації до цифрової.
- •4. Що таке дискретизація за часом? Сформулюйте теорему Котельникова.
- •5. В чому суть квантування аналогового сигналу? Що собою являють шуми квантування і чому вони виникають?
- •6. В чому полягає кодування інформації?
- •7. Що таке дворівневий код та як відбувається зображення інформації у вигляді двійкових чисел?
- •8. Проаналізуйте переваги та недоліки цифрової форми подання інформації.
- •9. Які системи числення ви знаєте? Наведіть їхню порівняльну характеристику.
- •10. Що таке цифровий ключ? Детально опишіть роботу біполярного насиченого ключа.
- •11. Як працюють цифрові ключі на мдн—транзисторах?
- •12. Що є фізичною причиною існування інерційності цифрових ключів? Які способи зменшення інерційності цифрових ключів ви знаєте?
- •13. Що таке логічні елементи?
- •14.В чому полягає суть операцій повторення та інверсії? Наведіть приклади реальних схем.
- •15. В чому полягає суть операції диз’юнкції? Наведіть приклади реальних схем.
- •16. В чому полягає суть операції кон’юнкції? Наведіть приклади реальних схем.
- •17. В чому полягає суть операції “або—не”? Наведіть приклади реальних схем.
- •18. В чому полягає суть операції “і—не”? Наведіть приклади реальних схем.
- •19. В чому полягає суть операцій рівнозначність та нерівнозначність? Наведіть приклади реальних схем.
- •20. Що таке логічні елементи з трьома вихідними станами? Для чого вони використовуються?
- •21. Що таке логічні інтегральні мікросхеми? Наведіть приклад функціонально повної системи логічних елементів.
- •22. Що таке суматор? Опишіть принцип дії суматора використовуючи поняття про доповняльний код.
- •23. Що таке дешифратор? Як він працює? Де використовується?
- •24. Що таке селектор? Як він працює? Де використовується?
- •25. Що таке мультиплексор? Опишіть принцип його дії.
- •26. Формувачі імпульсів: класифікація та принципи дії.
- •27. Запам’ятовуючі пристрої. Наведіть загальні характеристики запам’ятовуючих пристроїв та їхню класифікацію.
- •28. Що таке тригери? Де вони використовуються? Наведіть приклади.
- •29. Що таке регістр? Які типи регістрів ви знаєте? Наведіть приклади.
- •30. Що таке лічильник? Де вони застосовуються. Наведіть приклади.
- •31. Що таке коефіцієнт перерахунку лічильника? Як ним можна керувати? Наведіть приклади.
- •32. Що таке оперативні запам’ятовуючі пристрої? Які озп ви знаєте? Дайте загальну характеристику озп.
- •33. Детально опишіть принцип роботи статичного озп.
- •34. Детально опишіть принцип роботи динамічного озп.
- •35. Проаналізуйте переваги та недоліки статичних та динамічних озп.
- •36. Що таке постійні запам’ятовуючі пристрої. Які пзп ви знаєте?
- •37. Як побудовані та за яким принципом працюють масочні пзп?
- •38. В чому відмінність пзп та програмованих пзп? Наведіть приклади програмованих пзп.
- •39. За яким принципом працюють перепрограмовані пзп?
- •40. Що таке флеш—пам’ять? Як вона побудована? Порівняйте флеш—пам’ять типу nor та nand.
19. Чому в очікувальному мультивібраторі з емітерним зв’язком передній фронт вихідного імпульсу різкий, а не закруглений як у звичайного мультивібратора з емітерно-базовими зв’язками?
В колекторному колі VT2 відсутня ємність. Завдяки цьому вихідні імпульси, які виробляє такий мультивібратор, мають гарну прямокутну форму (не треба перезаряджати конденсатор, який доводиться перезаряджати у простій схемі автоколивального мультивібратора).
20. Чим визначається проміжок часу після закінчення вихідного імпульсу, коли очікувальний мультивібратор з емітерним зв’язком стане знову придатним для спрацювання від наступного пускового імпульсу?
Час перебування першого транзистора у закритому стані визначається сталою часу кола Rб * С. θ = 0,7 * Rб * С Після цього другий транзистор закривається і залишається закритим до наступного пускового імпульсу.
21. Чому схема симетричного тригера не може перебувати в симетричному режимі?
Тригер являє собою двокаскадний підсилювач постійної напруги (ППН), у якого вихід приєднаний безпосередньо до входу (рис. 4.19, а). Зазвичай каскади ППН, що утворюють тригер, ідентичні, і для того, щоб підкреслити симетрію схеми, її малюють у характерному симетричному вигляді (рис. 4.19, б).
Однак
навіть при ідеально симетричній побудові
така схема не може знаходитись у
симетричному режимі. Вона є нестійкою
і щонайменша флуктуація виводить її з
симетричного стану. Нехай, наприклад,
струм першого транзистора
дещо збільшився. Це призведе до зменшення
напруги
,
яке через дільник
передається на базу другого транзистора.
В результаті його колекторний струм
зменшиться, а напруги
і
збільшаться, що призведе до подальшого
збільшення струму
.
Отже, якщо кожний з каскадів забезпечуватиме підсилення за напругою k > 1, то випадкова флуктуація буде зростати подібно до лавини. Це зростання триватиме доти, доки хоча б один із транзисторів не втратить керуючої здатності чи то через його запирання , чи то через вихід у режим насичення. На цьому перехідний процес скінчиться і тригер встановиться у стійкий стан, коли один з транзисторів повністю закритий, а другий відкритий до насичення. В такому режимі відкритий транзистор своїм низьким потенціалом на колекторі утримуватиме другий транзистор у закритому стані, а той, в свою чергу, своїм високим колекторним потенціалом буде утримувати перший транзистор постійно відкритим.
22. Чи може функціонувати тригер, якщо його відкритий транзистор не перебуватиме в режимі насичення?
Зможе. Цитуючи попереднє питання: «зростання [випадкової флуктуації напруги] триватиме доти, доки хоча б один із транзисторів не втратить керуючої здатності чи то через його запирання , чи то через вихід у режим насичення. На цьому перехідний процес скінчиться і тригер встановиться у стійкий стан».
Тобто якщо один з транзисторів вже закрився, а інший ще не досяг насичення – не біда. Тригер-то все-одно в стійкому стані.
Але всі ці фокуси будуть впливати на вихідну напругу тригера, а також на її стабільність. Тому краще, якщо вони обидва в критичних станах – менший вплив випадкових флуктуацій на вихідні напруги.
23. Чому для побудови тригера бажано застосувати кремнієві, а не германієві транзистори?
Для побудови тригера бажано застосовувати кремнієві, а не германієві транзистори через те, що якщо транзистори будуть кремнієвими, то нульової напруги на базі одного транзистора буде достатньо для закривання другого транзистора. Тобто відкритий стан першого транзистора підтримуватиме закритий стан другого. Якщо ж будуть Ge-транзистори, то нульової напруги на базі одного транзистора буде не достатньо для закривання іншого, і тоді потрібно застосовувати ланцюг подачі додаткової закриваючої негативної напруги зміщення на базу транзистора.