- •Воздушная навигация часть 1
- •Оглавление
- •Приложение Сокращенные обозначения и условные знаки, принятые в самолетовождении
- •Условные обозначения элементов схем захода на посадку
- •Условные знаки, применяемые на полетных картах и схемах
- •ТермиНов
- •Локсодромия – линия на поверхности земного шара пересекающая мередианы под постояным углом
- •Угол сноса-угол заключенный между продольной осью самолета и линией пути Введение
- •1.Основы воздушной навигации
- •1.1 Формы и размеры Земли
- •Большим кругом (Great Circle, g/c)) называется окружность, образующаяся в результате сечения сферы плоскостью, проходящей через центр Землин
- •1.3. Ортодромия и локсодромия
- •1.4. Системы координат, применяемые в воздушной навигации
- •1 .Географическая система координат
- •2. Авиационные карты.
- •2.1. Общие сведения о плане и карте
- •Как видно из определения, план и карта — это прежде всего уменьшенные изображения того или иного участка земной поверхности. Уменьшение зависит от принятого для плана или карты масштаба.
- •2.2. Сущность картографических проекций и их классификация
- •2.4.Классификация авиационных карт
- •Магнитное наклонение θ – угол между горизонтальной плоскостью и направлением вектора напряженности т.
- •Магнитным меридианом называется линия, вдоль которой устанавливается свободно подвешенная магнитная стрелка под действием земного магнетизма.
- •2) Девиация магнитного компаса и вариация
- •3) Курсы вс и их взаимозависимость
- •4) Путевые углы.
- •4. Навигационная линейка нл-10м
- •4.1 Назначение и устройство навигационной линейки нл-10м
- •4.2 Шкалы навигационной линейки нл-10м
- •4.3 Решение математических задач с помощью нл-10м
- •Решение навигационных задач с помощью нл-10м
- •Прочие виды счетного штурманского снаряжения
- •5. Высота и скорость полета
- •5.1 Классификация высот по уровню отсчета
- •5.2. Способы измерения высоты полета
- •5.3 Погрешности барометрических высотомеров
- •5.4. Виды скоростей
- •5.5 Погрешности указателей скорости
- •5.6 Расчет истинной и приборной воздушной скорости по показанию однострелочного указателя скорости.
- •6. Визуальная ориентировка
- •6.2 Условия ведения визуальной ориентировки
- •6.3 Правила и порядок ведения визуальной ориентировки
- •7. Применение угломерных радионавигационных систем
- •7.1. Общая характеристика и виды радиотехнических систем
- •7.2. Основные радионавигационные элементы
- •8.1. Ветер и его характеристики
- •8.2.Элементы навигационного треугольника скоростей
- •8.3. Решение навигационного треугольника скоростей
- •8.4 Решение навигационного треугольника скоростей подсчетом в уме.
- •9. Время. Счисление времени
- •9.2. Виды времени.
- •9.3. Условия естественного освещения
- •10. Применение автоматического радиокомпаса.
- •10.1. Задачи, решаемые с помощью автоматического радиокомпаса.
- •10.2. Полет от радиостанции.
- •10.3. Полет на радиостанцию.
- •10.4 Контроль пути по дальности с помощью боковой радиостанции
- •10.5 Определение места вс
- •11. Применение наземных автоматических радиопеленгаторов и радиолокаторов.
- •11.1 Задачи самолетовождения, решаемые с помощью наземных арп.
- •11.2. Полет от наземного радиопеленгатора
- •11.3. Полет на радиопеленгатор
- •11.5. Сущность истинного пеленга (ип) и взаимозависимость пеленгов
- •11.7Определение места самолета и путевой скорости
- •5. Контроль и исправление пути при полете от и на рлс
- •12. Заход на посадку
- •12.1 Схемы снижения вс и захода на посадку
- •12.2 Характеристика маневров снижения и захода на посадку
- •12.3. Основные элементов малого прямоугольного маршрута в штил
- •12.4. Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
- •13. Обеспечение безопасности самолетовождения
- •13.1. Требования безопасности самолетовождения
- •13.3.Предотвращение столкновений самолетов с другими вс в полете
- •13.4. Потеря ориентировки
- •13.5. Предотвращение попадания вс в зоны с особым режимом полетов
- •13.6. Попадание вс в зоны с опасными метеорологическими явлениями.
- •14. Информационное обеспечение полетов вс.
- •14.1. Общие сведения об аэронавигационной информации.
- •14.3. Документы аэронавигационной информации.
- •14.4. Структура и содержание сборника ани (россджепп)
- •Часть 1. Общие положения (gen)
- •Часть2. Маршрут (enr)
- •Часть3. Аэродромы (ad)
- •14.5. Автоматизация информационного обеспечения.
- •15. Навигационная подготовка к полету.
- •15.1 Предварительная подготовка
- •15.2. Предполетная подготовка
- •16. Выполнение полета.
- •16.1. Порядок выполнения маршрутного полета
- •16.2. Выход на исходный пункт маршрута
- •16.3. Выход на линию заданного пути
- •16.4. Контроль и исправление пути
- •16.5. Выход на конечный пункт маршрута
- •16.6. Порядок работы штурмана при выполнении полета по воздушной трассе
- •16.7. Навигационные записи в полете.
- •. Расчет времени и места набора высоты заданного эшелона
- •Расчет времени и места начала снижения
- •10 Vверт ?
- •Расчет вертикальной скорости снижения или набора высоты
- •Библиографический список.
- •6. Федеральные авиационные правила полетов в воздушном пространстве
- •7. Федеральные авиационные правила «Подготовка и выполнение полетов в гражданской авиации рф №128 от 31 июля 2009 г
8.2.Элементы навигационного треугольника скоростей
Самолет относительно воздушной массы перемещается с воздушной скоростью в направлении своей продольной оси. Одновременно под действием ветра он перемещается вместе с воздушной массой в направлении и со скоростью ее движения. В результате ,движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, при полете с боковым ветром векторы воздушной скорости, путевой скорости и скорости ветра образуют треугольник (рис. 8.3), который называется навигационным треугольником скоростей. Каждый вектор характеризуется направлением и величиной.
Вектором воздушной скорости называется направление и скорость движения самолета относительно воздушных масс. Его направление определяется курсом самолета, а величина — значением воздушной скорости.
8.3 Навигационный треугольник скоростей и его элементы
Вектором путевой скорости называется направление и скорость движения самолета относительно земной поверхности. Его направление определяется путевым углом, а величина — значением путевой скорости.
Вектором ветра называется направление и скорость движения воздушной массы относительно земной поверхности. Его направление определяется направлением ветра, а величина — значением его скорости.
Навигационный треугольник скоростей имеет следующие элементы:
МК — магнитный курс самолета;
V — воздушная скорость;
МПУ— магнитный путевой угол (может быть заданным —ЗМПУ и фактическим — ФМПУ);
W — путевая скорость;
НВ — навигационное направление ветра;
U — скорость ветра;
УС — угол сноса;
УВ — угол ветра.
Фактическим магнитным путевым углом называется угол, заключенный между северным направлением магнитного меридиана и линией фактического пути. Отсчитывается по ходу часовой стрелки от 0 до 360°.
Углом сноса называется угол, заключенный между продольной осью самолета и линией пути. Отсчитывается вправо со знаком плюс и влево со знаком минус.
Углом ветра называется угол, заключенный между линией пути (фактической или заданной) и направлением навигационного ветра. Отсчитывается по ходу часовой стрелки
Элементы навигационного треугольника скоростей характеризуют направление и скорость ВС относительно воздушной среды и земной поверхности. Они находятся в определенной зависимост между собой:
МК = МПУ - (± УС); ОС = V cos УС;
МПУ = МК + (± УС); CB = U cos УВ;
УС = МПУ-МК; W = VсоsУС + UсоsУВ;
УВ = δ ± 180° - МПУ; δ = МПУ + УВ ± 180°.
Так
как углы сноса обычно небольшие, а
косинусы малых углов близки к единице,
то можно считать, что W
V+UсоsУВ.
Приведенные выше формулы используются
для расчета элементов навигационного
треугольника скоростей.
Угол сноса и путевая скорость являются основными навигационными элементами, поэтому нужно твердо знать, как они зависят от изменения воздушной скорости, скорости ветра и угла ветра.
Зависимость угла сноса и путевой скорости от воздушной скорости самолета.
При неизменном ветре и курсе самолета путевая скорость изменяется соответственно изменению воздушной скорости, т. е. с увеличением воздушной скорости путевая скорость становится больше, а с уменьшением — меньше. Считают, что изменение воздушной скорости вызывает пропорциональное изменение путевой скорости, т. е. насколько изменилась воздушная скорость, настолько соответственно изменится и путевая скорость.
Угол сноса с возрастанием воздушной скорости уменьшается, а с ее уменьшением — увеличивается.
Зависимость угла сноса и путевой скорости от скорости ветра.
При постоянной воздушной скорости и курсе самолета с увеличением скорости ветра угол сноса увеличивается, а при ее уменьшении — уменьшается (рис. 8.5).
Путевая скорость при попутном и попутно-боковом ветре с изменением скорости ветра изменяется так же, как и угол сноса. При встречном и встречно-боковом ветре с увеличением скорости ветра путевая скорость
Рис. 8.5 Зависимость УС и W от скорости ветра
а) ветер попутно-боковой; б) ветер встречно-боковой
Зависимость угла сноса и путевой скорости от угла ветра.
Угол ветра в полете не остается постоянным. Его величина изменяется в полете как вследствие изменения направления ветра, так и вследствие изменения направления полета.
Отложим в определенном масштабе вектор воздушной скорости (рис. 8.6). Из конца этого вектора радиусом, равным скорости ветра в том же масштабе, опишем окружность. Если перемещать вектор ветра по ходу часовой стрелки, то угол ветра будет изменяться.
Угол сноса и путевая скорость зависят от угла ветра следующим образом:
Рис.
8.6 Зависимость УС и W
от УВ
1. При УВ = 0° (ветер попутный)
УС=0,W=V+U
2. При увеличении угла ветра от 0 до 90° угол сноса увеличивается, а путевая скорость уменьшается.
3. При УВ = 90° (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной .
4. При увеличении УВ от 90 до 180° угол сноса и путевая скорость уменьшаются.
5. При УВ = 180° (ветер встречный) УС=0°, a W=V— U.
6. При увеличении УВ от 180 до 270° угол сноса и путевая скорость увеличиваются.
7. При УВ = 270° (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной.
8. При увеличении УВ от 270 до 360° угол сноса уменьшается, а путевая скорость увеличивается.
При решении большинства навигационных задач необходимо ясно представлять, в какую сторону при данном угле ветра будет направлен снос
Рис. 8.7. Правила определения W и знаков УС
самолета и какова его путевая скорость (больше или меньше воздушной).
Изменение угла ветра приводит к следующему изменению угла сноса и путевой скорости (рис. 7.7): при углах ветра 0—180° углы сноса положительные, а при углах ветра 180—360° — отрицательные; путевая скорость при углах ветра 270—0—90° больше воздушной скорости, а при углах ветра 90—180—270° меньше.
Пример. ЗМПУ=100°; δ=40°. Определить, в какую сторону направлен снос самолета и какова его путевая скорость.
Решение. 1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 40° + 180° — 100° = 120°.
2. Определяем знак угла сноса и путевую скорость. Так как УВ в пределах от 0 до 180°, то угол сноса будет положительный, а путевая скорость меньше воздушной.
Максимальным называется угол сноса при углах ветра 90 и 270° (см. рис. 7.6). Его величина определятся по формуле
sinУСмакс=U/V
При современных скоростях полета величина УС обычно не превышает 10—20°. Известно, что синусы малых углов можно принять равными самим углам, выраженным в радианах. 1 рад—57°,3 или округленно 60°.
На основании этого можно записать, что
sinУСмакс=
Следовательно,
=U/V,
откуда
УСмакс
=
Из формулы видно, что УС тем больше, чем меньше воздушная скорость полета и чем больше скорость ветра.
Пример. V=360 км/ч; U=60 км/ч. Определить максимальный угол сноса.
Решение.
УСмакс
=
=
=10°
Обычно максимальный угол сноса рассчитывается с помощью НЛ-10М (рис. 8.8).
