- •9. Основные способы регуляции активности ферментов
- •6. Белок-белковое взаимодействие
- •7. Ковалентная (химическая) модификация
- •11, Уровни структурной организации ферментов
- •Витамины
- •Витамин h(биотин,антисеборейный)
- •Витамин в9(фолиевая кислота,антианемический,фактор роста)
- •Витамин в6(пиридоксин,антидерматитный)
- •Витамин в12(кобаламин,антианемический)
I. Ферменты (энзимы) — это биологические катализаторы белковой природы, обладающие способностью активизировать различные химические реакции, происходящие в организме.
Физ-хим свойства: - высокомолекулярные соединения; - денатурация; - температурный оптимум; - высокая специфичность действия;
- активация и ингибирование ферментов.
Различия между ферментами и неорганическими катализаторами:
1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.
2. Ферменты обладают высокой специфичностью к субстрату.
3. Ферменты по своей химической природе белки, катализаторы - неорганика.
4. Ферменты работают только в опрделенном диапазоне температур (обычно в районе 37 град. С плюс/минус 2-3 град. С). , а скорость неорганического катализа возрастает в 2-4 раза при повышении температуры на каждые 10 град. С по линейной зависимости (правило Вант-Гоффа).
5. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.
6. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.
7. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).
Огромное многообразие белков обусловлено различными комбинациями АМИНОКИСЛОТ
Различают два главных вида специфичности ферментов: субстратную специфичность и специфичность действия.
А) Субстратная – катализируют превращения только определённого субстрата.
Б) Действия - это способность фермента катализировать только определенный тип химической реакции.
II-III. Ферменты могут иметь все 4 уровня структурной организации: первичную, вторичную, третичную и четвертичную. Большинство ферментов имеют четвертичную структуру. По химической природе ферменты могут быть белками простыми (ферменты протеины) и сложными (ферменты протеиды). Каталитическая функция ферментов определяется наличием одного или нескольких активных центров.
Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим.
Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем).
Активный центр фермента — участок поверхности молекулы фермента, непосредственно взаимодействующий с молекулой субстрата. Образован из остатков аминокислот. Возникает на уровне третичной структуры белка-фермента.
В его пределах различают три области:
-
каталитический центр — область (зона) активного центра фермента, непосредственно участвующая в химических преобразованиях субстрата.
-
адсорбционный центр — участок активного центра молекулы фермента, на котором происходит сорбция (связывание) молекулы субстрата.
-
аллостерические центры — такие участки молекулы фермента вне его активного центра, которые способны связываться слабыми типами связей (значит — обратимо) с тем или иным веществом (лигандом).
Множественные формы (истинные) — это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации, становятся разными, хотя и катализируют одну и ту же реакцию.
IV. Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим.
Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем).
Кофакторы.
Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы (коферментах) и/или в ионах металлов (кофакторах).
Кофакторы выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур.
Роль коферментов нередко играют витамины или их метаболиты (чаще всего — фосфорилированные формы витаминов группы B).
V. Ферменты могут иметь все 4 уровня структурной организации: первичную, вторичную, третичную и четвертичную. Большинство ферментов имеют четвертичную структуру. По химической природе ферменты могут быть белками простыми (ферменты протеины) и сложными (ферменты протеиды). Каталитическая функция ферментов определяется наличием одного или нескольких активных центров.
Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим.
Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор, примеры сложных ферментов - сукцинатдегидрогеназа, аминотрансферазы, пероксидаза. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем).
Роль апофермента.
Молекула апофермента выполняет две главные функции
1) активирование простетической группы
2) связывание фермента с субстратом.
Коферменты, или коэнзимы — малые молекулы небелковой природы, специфически соединяющиеся с соответствующими белками, называемыми апоферментами, и играющие роль активного центра или простетической группы молекулы фермента.
Роль коферментов нередко играют витамины или их метаболиты.
VI. Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим.
Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор, примеры сложных ферментов - сукцинатдегидрогеназа, аминотрансферазы, пероксидаза. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем).
В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом. Благодаря таким комплексам значительно ускоряется скорость превращения молекул.
-
пируватдегидрогеназный комплекс (пируватдегидрогеназа), превращающий пируват в ацетил-SКоА,
-
α-кетоглутаратдегидрогеназный комплекс (в цикле трикарбоновых кислот) превращающий α-кетоглутарат в сукцинил-SКоА,
-
комплекс под названием "синтаза жирных кислот" (или пальмитатсинтаза), синтезирующий пальмитиновую кислоту.
7, .Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:
Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные ( Кm 102 до 106). Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов. 8, Скорость ферментативной реакции зависит от многих факторов: от концентрации субстрата и фермента, температуры, рН среды, наличия различных регуляторных веществ, способных увеличивать или снижать активность ферментов.
Рассмотрим влияние концентрации субстрата на скорость ферментативной реакции .При низких концентрациях субстрата скорость прямо пропорциональна его концентрации, далее с ростом концентрации скорость реакции увеличивается медленнее, а при очень высоких концентрациях субстрата скорость практически не зависит от его концентрации и достигает своего максимального значения (Vmax). При низких температурах (приблизительно до 40 – 50 оС) повышение температуры на каждые 10 оС в соответствии с правилом Вант-Гоффа сопровождается увеличением скорости химической реакции в 2 – 4 раза. При высоких температурах более 55 – 60 оС активность фермента резко снижается из-за его тепловой денатурации, и, как следствие этого, наблюдается резкое снижение скорости ферментативной реакции. Влияние рН на скорость ферментативной реакции
Значение рН, при котором активность фермента максимальна, называется рН-оптимумом фермента. Значения рН-оптимума для различных ферментов колеблются в широких пределах.
Характер зависимости ферментативной реакции от рН определяется тем, что этот показатель оказывает влияние на:
a) ионизацию аминокислотных остатков, участвующих в катализе,
b) ионизацию субстрата,
c) конформацию фермента и его активного центра.
9. Основные способы регуляции активности ферментов
Аллостерическая регуляция. Фермент изменяет активность с помощью нековалентно связанного с ним эффектора. Связывание происходит в участке, пространственно удаленном от активного (каталитического) центра. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению определенной геометрии каталитического центра. Активность может увеличиться - это активация фермента, или уменьшиться - это ингибирование.
«Регуляция активности ферментов путем фосфорилирования-дефосфорилирования . Фермент изменяет активность в результате ковалентной модификации.
В этом случае фосфатная группа - ОРО32- присоединяется к гидроксильным группам в остатках серина, треонина или тирозина. В зависимости от природы фермента фосфорилирование может его активировать или, наоборот, инактивировать. Реакция присоединения фосфатной группы и ее отщепление катализируют специальные ферменты - протеинкиназы и протеинфосфатазы.
Регуляция путем ассоциации-диссоциации субъединиц в олигомерном ферменте. Этот процесс иногда начинается с ковалентной или нековалентной модификации одной из субъединиц. Например, фермент протеинкиназа в неактивной форме построена как тетрамер R2C2 (R и С - разные субъединицы). Активная протеинкиназа представляет собой субъединицу С, для освобождения которой необходима диссоциация комплекса.
Аденилатциклазная система. Аденилатциклаза и протеинкиназа катализируют взаимосвязанные реакции, которые составляют единую регуляторную систему.
С помощью этой системы в клетку передаются сигналы из внеклеточной среды, и в нужном направлении изменяется метаболизм клетки. Внеклеточным вестником сигнала могут быть разные молекулы, в том числе и гормоны. Эти молекулы не проникают внутрь клетки, но «узнаются» мембранными рецепторами. При активации аденилатциклазы происходят следующие этапы:
-
изменение конформации рецептора после присоединения к нему сигнальной молекулы и увеличение его сродства к регуляторному G-белку. В результате образуется комплекс рецептора и протомеров G-белка;
Активация ферментов путем частичного протеолиза. Некоторые ферменты синтезируются первоначально неактивными и лишь после секреции из клетки переходят в активную форму. Неактивный предшественник называется проферментом. Активация профермента включает модификацию первичной структуры с одновременным изменением конформации. Например, трипсиноген
При действии ионизирующего излучения на чистые вещества все результирующие эффекты обусловлены первичной ионизацией и возбуждением в самом веществе совместно с сопутствующими вторичными реакциями. Когда облучается вещество в растворе, возникает вопрос, обусловлены ли конечные эффекты прямым действием на молекулы растворенного вещества или радикалами, созданными в растворителе и прореагировавшими затем с растворенным веществом. Первое называется прямым действием, второе — косвенным действием. Доля молекул растворенного вещества, прореагировавших под действием заданной дозы, при прямом действии не должна зависеть от их концентрации, а их число должно быть пропорционально концентрации. Если имеет место косвенное действие, то число прореагировавших молекул растворенного вещества не зависит от концентрации и,
Процесс инактивации обусловлен прежде всего радикальными реакциями на выход инактивации влияет pH растворов, концентрация фермента, присутствие кислорода во время облучения, а также величина ЛПЭ [207]. Наблюдаемая устойчивость растворовферментов к инактивирующему действию излучения в значительной степени может быть обусловлена присутствием разнообразных примесей, оказывающих защитное действие, а также эффектом самозащиты, т, е. особым случаем защитного действия, когда скорость радиолитического разложения вещества снижается в присутствии продуктов его радиолиза.
10
1. Доступность субстрата или кофермента
2. Компартментализация
Компартментализация – это сосредоточение ферментов и их субстратов в одном компартменте (одной органелле) – в эндоплазматическом ретикулуме, митохондриях, лизосомах, ядре, плазматической мембране и т.п.
3. Генетическая регуляция
-
Конституитивные – такие ферменты, которые образуются в клетке постоянно.
-
Индуцируемые (адаптивные) – синтез этих ферментов возрастает при наличии соответствующих стимулов (индукторов).
-
Репрессируемые – образование таких ферментов в клетке при необходимости подавляется.
4. Ограниченный (частичный) протеолиз проферментов
Ограниченный (частичный) протеолиз проферментов подразумевает, что синтез некоторых ферментов осуществляется в виде более крупного предшественника и при поступлении в нужное место этот фермент активируется через отщепление от него одного или нескольких пептидных фрагментов. Подобный механизм защищает внутриклеточные структуры от повреждений.
5. Аллостерическая регуляция
Аллостерические ферменты построены из двух и более субъединиц: одни субъединицы содержат каталитический центр, другие имеют аллостерический центр и являются регуляторными. Присоединение эффектора к аллостерической (регуляторной) субъединице изменяет конформацию белка и, соответственно, активность каталитической субъединицы.
Аллостерические ферменты обычно стоят в начале метаболических путей, и от их активности зависит течение многих последующих реакций. Поэтому они часто называются ключевыми ферментами.