- •Структура цикла икм-30
- •2. Телефонная нагрузка. Основные понятия и методы расчета.
- •3. Потоки вызовов и их характеристики: параметр потока, интенсивность потока- их определения и взаимосвязь.
- •4.Классификация потоков вызовов: стационарность, ординарность, последействие. Простейший поток вызовов и его характеристики.
- •5. Интенсивность обслуженной и поступающей нагрузки. Вывод выражения для интенсивности обслуженной нагрузки и теоремы о количественной оценке интенсивности поступающей нагрузки.
- •5 Вопрос
- •6. Коммутатор. Цифровые коммутаторы. Координаты коммутации. Принципы построения цифровых коммутационных полей (одно- и многокаскадные, Клоза, итерационный принцип).
- •7. Цифровые пространственные коммутаторы. Варианты реализации. Временные диаграммы работы.
- •8. Цифровые временные коммутаторы. Пример реализации на микросхемах озу. Временные диаграммы работы.
- •9. Цифровые пространственно-временные коммутаторы. Пример реализации коммутатора емкостью 8х8 потоков е1. Временные диаграммы работы.
- •10. История, современное состояние и перспективы развития сетей связи. Аспекты интеграции элементов сетей связи.
- •11. Разделенные и неразделенные структуры построения коммутационных полей и их применяемость.
- •11 Вопрос Обеспечение дуплексности соединений.
- •Разделенная структура цкп.
- •Неразделенная структура.
- •12. Реверсивные коммутационные поля цифровых атс. Основные примущества, алгоритмы реализации и функционирования.
- •13.Коммутационные поля Клоза. Сравнение с однокаскадными кп равной емкости по количеству точек коммутации.
- •14. Системы коммутации с распределенным управлением. Атсэ itt-1240. Алгоритм установления соединения и структура построения коммутационного поля.
- •15. Расчет объема оборудования и качества обслуживания смо с отказами. Первая формула Эрланга.
- •16. Абонентский комплект цифровой атс. Функции borscht и их реализация.
- •Обобщенная структурная схема абонентского комплекта. Перечень функций borscht
- •17.Требования к речевому и адресному озу пространственно-временного коммутатора по емкости и быстродействию.
- •18. Структура атсэ с децентрализованным управлением. Взаимодействие управляющих устройств в процессе установления соединения.
- •18. Системы коммутации с децентрализованным управлением. Атс м-200.
- •19. Теория телетрафика как составная часть теории массового обслуживания. Предмет, основные задачи, математические модели теории телетрафика и их основные элементы.
- •Математические модели систем распределения информации
- •19. Теория телетрафика как составная часть теории массового обслуживания. Предмет, основные задачи, математические модели теории телетрафика и их основные элементы.
- •20. Управляющие устройства цифровых систем коммутации. Централизованное, децентрализованное и распределенное управление. Способы распределения функций управления.
- •21. Расчёт блокировок коммутационных полей большой емкости методом вероятностных графов. Основные допущения и область применения метода.
- •23.Виды кроссового оборудования цифровых атс. Назначение и функции. Сопряжение цифровых систем коммутации и передачи.
- •24. Международная стандартизация в области телефонии. Основные институты стандартизации и нормативно-технические документы. Нормы качества обслуживания на телефонных сетях рф.
- •24. Алгоритмы установления соединения в коммутационных полях цифровых атс с децентрализованным и распределенным управлением. Режимы искания.
- •25. Системы сигнализации современных телефонных сетей связи рф.
- •26. Система сигнализации окс №7 мсэ.
- •27. Принципы и средства коммутации в спр. Подсистема коммутации базовой станции.
- •28. Телефонная нагрузка и методы ее концентрации в сетях.
- •30. Принципы построения подсистем технической эксплуатации и контроля цифровых атс. Методы технического обслуживания и управления.
- •30. Первичные сети связи, их уровни, состав и структура. Системы sdh и pdh, типовые каналы и групповые тракты передачи.
- •31. Вторичные сети связи, их уровни и элементы. Сети доступа и магистральные сети.
- •33. Виды оконечных устройств (терминалов) вторичных цепей. Устройство и принцип действия телефонного аппарата.
- •35. Радиально-узловой и кольцевой принципы
- •36. Системы нумерации на местных, внутризоновых, междугородних сетях.
- •37. Принципы построения сотовых сетей подвижной связи. Нумерация в сотовых сетях связи
- •Принципы нумерации
- •Порядок набора Городская телефонная связь
- •Междугородная и международная телефонная связь
- •Альтернативные операторы дальней связи
- •Междугородняя связь для абонентов сотовых сетей
- •Внутризоновые и местные звонки
- •Внутрирайонные префиксы
- •38. Система сигнализации по двум выделенным каналам
- •39. Атсэ neax 2000 ips
- •40. Понятие об интеллектуальных сетях связи. Интеллектуальная сеть связи на базе платформы c&c08. Услуги интеллектуальной сети.
- •Интеллектуальная сеть
- •Интеллектуальные услуги
- •Встроенные интеллектуальные услуги c&c08
- •Функции centrex c&c08
- •Функции консоли centrex c&c08
- •Краткий обзор некоторых дополнительных видов обслуживания
- •Услуги набора номера
- •Услуги переадресации
- •Услуги ожидания
- •Услуги многосторонней связи
- •Административные услуги
- •Другие услуги
- •Услуги службы центрекс
3. Потоки вызовов и их характеристики: параметр потока, интенсивность потока- их определения и взаимосвязь.
Потоком вызовов называется последовательность вызовов, поступающих один за другим в какие-либо моменты времени. Для ТТТ типичными примерами являются( поток вызовов, поступающих от группы абонентов или группы устройств телефонной сети, поток телеграмм, поток информации, поступающей с ЭВМ.
Различают:
Детерминированный поток вызовов - если совокупность моментов поступления вызовов строго определена и заранее известна (частный случай случайных потоков, на практике встречается редко).
Случайный - если совокупность моментов поступления вызовов случайна (примеры – поток сеансов связи с искусственными спутниками Земли.)
Ведущая функция потока Λ
Поток вызовов – последовательность вызовов, поступающих один за другим в какие-либо моменты времени (вызовы, поступающие от группы абонентов или группы устройств телефонной сети, поток информации, поступающий на ЭВМ, поток телеграмм и т. п.).
Потоки вызовов подразделяются на следующие виды:
детерминированные – с фиксированными моментами поступления;
случайные – потоки, в которых моменты поступления вызовов зависят от случайных факторов.
Детерминированные потоки являются частным случаем случайных потоков и на практике встречаются редко. В связи с этим в теории телетрафика основное внимание уделяется рассмотрению случайных потоков вызовов.
Основными характеристиками случайных потоков являются:
1) параметр потока (t) в момент времени t есть предел отношения вероятности поступления не менее одного вызова в промежутке (t, t +t) к величине этого промежутка t при t0:
, (8.2)
где i – количество вызовов
2) интенсивность потока (t) в момент времени t есть предел отношения приращения математического ожидания числа вызовов в промежуток времени (t, t +t) к величине этого промежутка t при t0:
, (8.3)
где (0,t) (0,t+t) – математические ожидания числа вызовов за промежутки времени (0,t) (0,t+t).
Интенсивность
(t)
характеризует случайный поток в момент
времени t
числом поступающих вызовов. Параметр
характеризует этот же поток за ту же
единицу времени числом вызывающих
моментов, т. е. моментов поступления
одного или одновременно группы вызовов.
Поэтому для любого случайного потока
имеет место соотношение:
.
Основными свойствами случайных потоков являются:
стационарность – стационарным называется поток, если вероятность поступления определенного количества вызовов за любой промежуток времени определяется лишь длительностью этого промежутка и не зависит от момента его начала;
ординарность – ординарным называется поток, в котором вероятность поступления более чем одного вызова за малый промежуток времени пренебрежительно мала по сравнению с вероятностью поступления одного вызова;
отсутствие последствия – поток вызовов называется потоком без последствия, если вероятность поступления вызова в момент времени t не зависит от предыдущих событий.
Поток вызовов, обладающий одновременно свойствами стационарности, ординарности и отсутствия последствия называется простейшим потоком.
