- •1. Дайте визначення таким поняттям як рішення, управлінське рішення, прийняття рішення. Перелічіть засади, на яких ґрунтується прийняття управлінських рішень.
- •2. Складові прийняття управлінських рішень.
- •3. Етапи розгорнутого процесу прийняття рішень. Охарактеризуйте коротко кожен з них.
- •4. Характерні помилки, які можуть траплятися у процесі прийняття рішень.
- •5. Алгоритм та його місце в теорії інтелектуальних систем прийняття рішень.
- •6. Структура інтелектуальної системи прийняття рішень.
- •7. Сутність поняття «Інтелектуальна система прийняття рішень».
- •8. Концептуальні положення системної парадигми.
- •9. Переваги та недоліки системної парадигми.
- •10. Принципи системного аналізу.
- •11. Основні методи системного аналізу.
- •12. Відмінності між класичним та новітнім системними підходами стосовно прийняття рішень.
- •13. Охарактеризуйте стисло суть кроків вирішення проблем та прийняття рішень.
- •14. Суть понять «дані» та «знання». Покажіть між ними відмінність.
- •15. Суть вимірності об’єкта. Шкали.
- •16. Особливості представлення знань в іспр.
- •17. Представлення знань в іспр за допомогою логічної моделі. Навести приклад.
- •18. Представлення знань в іспр за допомогою семантичних мереж. Навести приклад.
- •19. Представлення знань в іспр за допомогою фреймової моделі. Навести приклад.
- •20. Представлення знань в іспр за допомогою продукційної моделі. Навести приклад.
- •21. Раціональний вибір та аксіоми раціонального поводження в економіці.
- •22. Функції вибору та операції над ними.
- •23. Дерево рішень. Прийняття рішень за його допомогою.
- •24. Суть нераціонального поводження. Евристики та зміщення.
- •25. Теорія проспектів. Її відмінність від теорії корисності.
- •26. Види невизначеності та причини її виникнення.
- •27. Сутність ризику. Його суб’єктивність та об’єктивність.
- •28. Система постулатів стосовно ризику як економічної категорії.
- •29. Узагальнений алгоритм вимірювання певного виду економічного ризику
- •30. Сутність якісного аналізу ризику
- •31. Кількісні показники оцінки ступеня ризику в абсолютному вираженні.
- •32. Кількісні показники оцінки ступеня ризику у відносному вираженні
- •33. Визначення нечіткої множини та її властивості.
- •34. Операції над нечіткими множинами. Задати універсальну множину та дві нечіткі множини на ній та здійснити всі можливі операції над ними.
- •35. Суть дефазифікації. Методи дефазифікації. Наведіть приклад.
- •36. Функція належності та методи її побудови.
- •37. Нечітке відношення та його властивості.
- •38. Суть прийняття рішення за принципом Белмана–Заде.
- •39. Кроки нечіткого виводу в загальному випадку.
- •40, Що таке задачі оптимізації? у яких випадках застосування інструментарію генетичного алгоритму є ефективнішим за традиційні методи оптимізації.
- •41. Способи кодування параметрів задачі для використання у прийнятті рішення інструментарію генетичного алгоритму. Детально пояснять двійкове кодування.
- •42. Основна термінологія, що використовується в генетичному алгоритмі.
- •43. Основі кроки класичного генетичного алгоритму. Опишіть їх.
- •45. Оператори генетичного алгоритму.
- •46. Експертна система оцінювання та принципи, на яких вона ґрунтується.
- •47. Схема експертного оцінювання з урахуванням послідовності залучення і функцій основних груп суб'єктів.
- •48. Етапи процесу експертного оцінювання
- •49. Методи колективної роботи експертної групи
- •50. Методи отримання індивідуальної думки членів експертної групи.
- •51. Задачі експертного оцінювання.
- •52. Статистичні методи обробки експертної інформації.
- •53. Якісна модель опр.
- •54. Способи якісного вимірювання оцінок альтернатив за критеріями.
- •55. Метод запрос. (Замкнуті Процедури у Опорних Ситуацій)
- •56. Метод аналізу ієрархій.
- •57.Суть багатокритеріальних задач прийняття рішень.
- •58. Назвіть типові багатокритеріальні задачі та стисло опишіть одну з них.
- •59. Кроки процесу розв‘язування багатокритеріальної задачі.
- •60. Суть методу використання гіперболічної функції для розв’язування багатокритеріальної задачі.
- •61. Стисло опишіть основні кроки розпливчастого методу аналізу ієрархій.
- •62. Гра та її складові.
- •63. Класифікація інформаційних ситуацій.
- •64. Інгредієнт функціонала оцінювання
- •65. Прийняття рішень у полі першої інформаційної ситуації.
- •66. Прийняття рішень у полі другої інформаційної ситуації.
- •67. Прийняття рішень у полі третьої інформаційної ситуації.
- •68. Прийняття рішень у полі четвертої інформаційної
- •69. Прийняття рішень у полі п'ятої інформаційної ситуації.
- •70. Прийняття рішень у полі шостої інформаційної ситуації.
- •71. Суть теоретико-ігрового підходу в прийнятті рішень з урахуванням
- •72. Ігровий розпливчастий метод аналізу ієрархій (ірмаі).
- •73. Стисло охарактеризуйте теоретико-ігрову концепцію вибору портфеля.
- •75. Одношарові та багатошарові штучні нейронні мережі. Їх архітектурні особливості. Розрахунок вихідного вектору.
- •76. Суть навчання штучних нейронних мереж та його оцінювання.
- •77. Правила навчання штучних нейронних мереж.
- •78. Назвіть різні структури нейронних мереж та для однієї з них наведіть алгоритм її навчання.
- •79. Особливості сумісного використання генетичних алгоритмів та штучних нейронних мереж.
- •80. Основні характеристики штучних нечітких нейронних мереж.
20. Представлення знань в іспр за допомогою продукційної моделі. Навести приклад.
Продукційна модель, або модель, базована на правилах - одна з моделей представлення знань, вона дозволяє представити знання у вигляді речень виду «Якщо (умова) то (дія)». База знань у продукційній моделі — це сукупність бази фактів і бази правил. Кожне продукційне правило в БЗ втілює автономну частину експертних знань одержаних від експерта при набутті знань вручну або використовуючи методи автоматичного видобування знань. Продукційна модель найчастіше використовується в промислових експертних системах. Наприклад, у медичній експертній системі правила if…then можуть використовуватися для встановлення взаємозв'язків між симптомами і діагнозами. Під час виведення реальний симптом зіставляється з тим, які є в лівих частинах правил і в разі збігу права частина відповідного правила вважається можливим діагнозом. Якщо є інші правила, що містять у лівих частинах отриманий можливий діагноз, то він розглядається як проміжний симптом. У цьому випадку здійснюється подальше виведення, яке триває доти, доки не буде отримано результат, з якого вже нічого не можна вивести. Якщо більше немає правил, на основі яких можна зробити виведення з отриманого можливого діагнозу, то він розглядається як остаточний. На будь-якому кроці такого виведення може виявитися кілька застосовних правил і тоді породжується дерево виведення, що визначає множину діагнозів. Продукційна модель приваблює користувачів відносною простотою, наочністю, високою модульністю, легкістю до внесення змін та доповнень, простотою схеми логічного виводу. Існує велика кількість програмних засобів, що реалізують продукційну модель (EXSYS, RuleBook, ЭКО).
21. Раціональний вибір та аксіоми раціонального поводження в економіці.
Задача вибору є однією з центральних в економіці. Дві основні діючі особи в економіці – споживач (покупець) та виробник (продавець) – постійно задіяні в процесі вибору. Споживач вирішує, що купувати та по якій ціні. Виробник вирішує, в що вкладати капітал та які товари потрібно виробити. Одне з основних припущень економічної теорії полягає в тому, що людина робить раціональний вибір. Раціональний вибір означає припущення, що рішення людини є результатом впорядкованого процесу мислення. Аксіоми раціональної поведінки наведено у праці Дж. Фон Неймана та О. Моргенштерна. За умови виконання цих аксіом автори довели теорему про існування деякої функції, що регулює раціональний вибір, — функції корисності. Аксіома 1 (повноти). Коли підприємець стикається з двома будь-якими рядами подій, він завжди може сказати, який йому більше до вподоби або йому байдуже, який із рядів подій вибрати. Аксіома 2 (транзитивності). Перевага серед різних рядів подій послідовна, тобто, якщо ряд X > Y, Y > Z, то X > Z. Завдяки аксіомі транзитивності виключається мінливість смаків споживача. Аксіома 3 (неперервності). В умовах аксіоми транзитивності відносно альтернатив X, Y, Z припустимо, що з імовірністю 1 індивід може отримати Y, з імовірністю p — X, а з ймовірністю (1 – p) — Z. Тоді існує таке p, за якого ці дві лотереї для індивіда рівноцінні. Аксіома 4 (незалежності). Нехай існують блага або товари X і Y, які, на думку індивіда, однакові, та дві лотереї, які відрізняються лише тим, що одна містить X, а друга — Y, тоді ці дві лотереї для індивіда однакові. Аксіома 5 (нерівних імовірностей). Якщо індивіду запропонувати дві лотереї, які дають однаковий виграш із різною ймовірністю, то він обирає ту, ймовірність виграшу якої більша. Аксіома 6 (складеної лотереї). Коли призом однієї лотереї є білет іншої лотереї, то індивід приймає рішення лише з міркувань імовірностей виграшу кінцевого призу.
