- •1. Дайте визначення таким поняттям як рішення, управлінське рішення, прийняття рішення. Перелічіть засади, на яких ґрунтується прийняття управлінських рішень.
- •2. Складові прийняття управлінських рішень.
- •3. Етапи розгорнутого процесу прийняття рішень. Охарактеризуйте коротко кожен з них.
- •4. Характерні помилки, які можуть траплятися у процесі прийняття рішень.
- •5. Алгоритм та його місце в теорії інтелектуальних систем прийняття рішень.
- •6. Структура інтелектуальної системи прийняття рішень.
- •7. Сутність поняття «Інтелектуальна система прийняття рішень».
- •8. Концептуальні положення системної парадигми.
- •9. Переваги та недоліки системної парадигми.
- •10. Принципи системного аналізу.
- •11. Основні методи системного аналізу.
- •12. Відмінності між класичним та новітнім системними підходами стосовно прийняття рішень.
- •13. Охарактеризуйте стисло суть кроків вирішення проблем та прийняття рішень.
- •14. Суть понять «дані» та «знання». Покажіть між ними відмінність.
- •15. Суть вимірності об’єкта. Шкали.
- •16. Особливості представлення знань в іспр.
- •17. Представлення знань в іспр за допомогою логічної моделі. Навести приклад.
- •18. Представлення знань в іспр за допомогою семантичних мереж. Навести приклад.
- •19. Представлення знань в іспр за допомогою фреймової моделі. Навести приклад.
- •20. Представлення знань в іспр за допомогою продукційної моделі. Навести приклад.
- •21. Раціональний вибір та аксіоми раціонального поводження в економіці.
- •22. Функції вибору та операції над ними.
- •23. Дерево рішень. Прийняття рішень за його допомогою.
- •24. Суть нераціонального поводження. Евристики та зміщення.
- •25. Теорія проспектів. Її відмінність від теорії корисності.
- •26. Види невизначеності та причини її виникнення.
- •27. Сутність ризику. Його суб’єктивність та об’єктивність.
- •28. Система постулатів стосовно ризику як економічної категорії.
- •29. Узагальнений алгоритм вимірювання певного виду економічного ризику
- •30. Сутність якісного аналізу ризику
- •31. Кількісні показники оцінки ступеня ризику в абсолютному вираженні.
- •32. Кількісні показники оцінки ступеня ризику у відносному вираженні
- •33. Визначення нечіткої множини та її властивості.
- •34. Операції над нечіткими множинами. Задати універсальну множину та дві нечіткі множини на ній та здійснити всі можливі операції над ними.
- •35. Суть дефазифікації. Методи дефазифікації. Наведіть приклад.
- •36. Функція належності та методи її побудови.
- •37. Нечітке відношення та його властивості.
- •38. Суть прийняття рішення за принципом Белмана–Заде.
- •39. Кроки нечіткого виводу в загальному випадку.
- •40, Що таке задачі оптимізації? у яких випадках застосування інструментарію генетичного алгоритму є ефективнішим за традиційні методи оптимізації.
- •41. Способи кодування параметрів задачі для використання у прийнятті рішення інструментарію генетичного алгоритму. Детально пояснять двійкове кодування.
- •42. Основна термінологія, що використовується в генетичному алгоритмі.
- •43. Основі кроки класичного генетичного алгоритму. Опишіть їх.
- •45. Оператори генетичного алгоритму.
- •46. Експертна система оцінювання та принципи, на яких вона ґрунтується.
- •47. Схема експертного оцінювання з урахуванням послідовності залучення і функцій основних груп суб'єктів.
- •48. Етапи процесу експертного оцінювання
- •49. Методи колективної роботи експертної групи
- •50. Методи отримання індивідуальної думки членів експертної групи.
- •51. Задачі експертного оцінювання.
- •52. Статистичні методи обробки експертної інформації.
- •53. Якісна модель опр.
- •54. Способи якісного вимірювання оцінок альтернатив за критеріями.
- •55. Метод запрос. (Замкнуті Процедури у Опорних Ситуацій)
- •56. Метод аналізу ієрархій.
- •57.Суть багатокритеріальних задач прийняття рішень.
- •58. Назвіть типові багатокритеріальні задачі та стисло опишіть одну з них.
- •59. Кроки процесу розв‘язування багатокритеріальної задачі.
- •60. Суть методу використання гіперболічної функції для розв’язування багатокритеріальної задачі.
- •61. Стисло опишіть основні кроки розпливчастого методу аналізу ієрархій.
- •62. Гра та її складові.
- •63. Класифікація інформаційних ситуацій.
- •64. Інгредієнт функціонала оцінювання
- •65. Прийняття рішень у полі першої інформаційної ситуації.
- •66. Прийняття рішень у полі другої інформаційної ситуації.
- •67. Прийняття рішень у полі третьої інформаційної ситуації.
- •68. Прийняття рішень у полі четвертої інформаційної
- •69. Прийняття рішень у полі п'ятої інформаційної ситуації.
- •70. Прийняття рішень у полі шостої інформаційної ситуації.
- •71. Суть теоретико-ігрового підходу в прийнятті рішень з урахуванням
- •72. Ігровий розпливчастий метод аналізу ієрархій (ірмаі).
- •73. Стисло охарактеризуйте теоретико-ігрову концепцію вибору портфеля.
- •75. Одношарові та багатошарові штучні нейронні мережі. Їх архітектурні особливості. Розрахунок вихідного вектору.
- •76. Суть навчання штучних нейронних мереж та його оцінювання.
- •77. Правила навчання штучних нейронних мереж.
- •78. Назвіть різні структури нейронних мереж та для однієї з них наведіть алгоритм її навчання.
- •79. Особливості сумісного використання генетичних алгоритмів та штучних нейронних мереж.
- •80. Основні характеристики штучних нечітких нейронних мереж.
80. Основні характеристики штучних нечітких нейронних мереж.
Штучні нейронні мережі (ШНМ) — математичні моделі, а також їхня програмна та апаратна реалізація, побудовані за принципом функціонування біологічних нейронних мереж — мереж нервових клітин живого організму. Системи, архітектура і принцип дії базується на аналогії з мозком живих істот. Ключовим елементом цих систем виступає штучний нейрон як імітаційна модель нервової клітини мозку — біологічного нейрона. Даний термін виник при вивченні процесів, які відбуваються в мозку, та при спробі змоделювати ці процеси. Першою такою спробою були нейронні мережі Маккалока і Піттса. Як наслідок, після розробки алгоритмів навчання, отримані моделі стали використовуватися в практичних цілях: в задачах прогнозування, для розпізнавання образів, в задачах керування та інші.
ШНМ представляють сбою систему з'єднаних і взаємодіючих між собою простих процесорів(штучних нейронів). Такі процесори зазвичай достатньо прості, особливо в порівнянні з процесорами, що використовуються в персональних комп'ютерах. Кожен процесор схожої мережі має справу тільки з сигналами, які він періодично отримує, і сигналами, які він періодично посилає іншим процесорам. І тим не менш, будучи з'єднаними в досить велику мережу з керованою взаємодією, такі локально прості процесори разом здатні виконувати достатньо складні завдання. З точки зору машинного навчання, нейронна мережа являє собою окремий випадок методів розпізнавання образів, дискримінантного аналізу, методів кластеризації тощо З математичної точки зору, навчання нейронних мереж — це багатопараметрична задача нелінійної оптимізації. З точки зору кібернетики, нейронна мережа використовується в задачах адаптивного управління і як алгоритми для робототехніки. З точки зору розвитку обчислювальної техніки та програмування, нейронна мережа — спосіб вирішення проблеми ефективного паралелізму . А з точки зору штучного інтелекту, ШНМ є основою філософської течії коннективізму і основним напрямком в структурному підході з вивчення можливості побудови (моделювання) природного інтелекту за допомогою комп'ютерних алгоритмів. Нейронні мережі не програмуються в звичайному розумінні цього слова, вони навчаються. Можливість навчання — одна з головних переваг нейронних мереж перед традиційними алгоритмами. Технічно навчання полягає в знаходженні коефіцієнтів зв'язків між нейронами. У процесі навчання нейронна мережа здатна виявляти складні залежності між вхідними даними і вихідними, а також виконувати узагальнення. Це означає, що у разі успішного навчання мережа зможе повернути вірний результат на підставі даних, які були відсутні в навчальній вибірці, а також неповних та / або «зашумленних», частково перекручених даних.
Біологічна нейронна мережа складається з групи або декількох груп хімічно або функціонально пов'язаних нейронів. Один нейрон може бути пов'язаний з багатьма іншими нейронами, а загальна кількість нейронів та зв'язків між ними може бути дуже великою. Зв'язки, які називаються синапсами, як правило формуються від аксонів до дендритів, хоча дендро-дендритичні мікросхем та інші зв'язки є можливими. Крім електричної передачі сигналів, також є інші форми передачі, які виникають з нейротрансмітерної(хімічний передавач імпульсів між нервовими клітинами) дифузії, і мають вплив на електричну передачу сигналів. Таким чином, нейронні мережі є надзвичайно складними.
Штучний інтелект і когнітивне моделювання намагаються імітувати деякі властивості біологічних нейронних мереж. Хоча аналогічні в своїх методах, перша має на меті вирішення конкретних завдань, а друга спрямована на створення математичних моделей біологічних нейронних систем.
У сфері штучного інтелекту, штучні нейронні мережі були успішно застосовані для розпізнавання мови, аналізу зображень та адаптивного управління, для того, щоб побудувати так званих програмних агентів (в комп'ютерних і відео ігор) або автономні роботи. На даний час, більшість розроблених штучних нейронних мереж для штучного інтелекту основі на статистичних оцінках, класифікації оптимізації та теорії керування.
Алгоритм та його місце в теорії інтелектуальних систем прийняття рішень.;5
Види невизначеності та причини її виникнення.;26
Визначення нечіткої множини та її властивості.;33
Гра та її складові.;62
Дайте визначення таким поняттям як рішення, управлінське рішення, прийняття рішення. Перелічіть засади, на яких ґрунтується прийняття управлінських рішень.;1
Дерево рішень. Прийняття рішень за його допомогою.;23
Експертна система оцінювання та принципи, на яких вона ґрунтується.;46
Етапи процесу експертного оцінювання.;48
Етапи розгорнутого процесу прийняття рішень. Охарактеризуйте коротко кожен з них.;3
Задачі експертного оцінювання.;51
Ігровий розпливчастий метод аналізу ієрархій (ІРМАІ).;72
Інгредієнт функціонала оцінювання;64
Кількісні показники оцінки ступеня ризику в абсолютному вираженні.;31
Кількісні показники оцінки ступеня ризику у відносному вираженні;32
Класифікація інформаційних ситуацій.;63
Кроки процесу розв‘язування багатокритеріальної задачі.;59
Методи колективної роботи експертної групи.;49
Методи отримання індивідуальної думки членів експертної групи.;50
Назвіть різні структури нейронних мереж та для однієї з них наведіть алгоритм її навчання.;78
Назвіть типові багатокритеріальні задачі та стисло опишіть одну з них.;58
Нечітке відношення та його властивості.;37
Одношарові та багатошарові штучні нейронні мережі. їх архітектурні особливості. Розрахунок вихідного вектору.;75
Оператори генетичного алгоритму.;45
Операції над нечіткими множинами. Задати універсальну множину та дві нечіткі множини на ній та здійснити всі можливі операції над ними.;34
Основі кроки класичного генетичного алгоритму. Опишіть їх.;43
Основна термінологія, що використовується в генетичному алгоритмі.;42
Основні характеристики штучних нечітких нейронних мереж.;80
Особливості сумісного використання
генетичних алгоритмів та штучних нейронних мереж.;79
Правила навчання штучних нейронних мереж.;77
Представлення знань в ІСПР за допомогою логічної моделі. Навести приклад.;17
Представлення знань в ІСПР за допомогою продукційної моделі. Навести приклад.;20
Представлення знань в ІСПР за допомогою семантичних мереж. Навести приклад.;18
Представлення знань в ІСПР за допомогою фреймової моделі. Навести приклад.;19
Прийняття рішень у полі другої інформаційної ситуації.;66
Прийняття рішень у полі п’ятої інформаційної ситуації.;69
Прийняття рішень у полі першої інформаційної ситуації.;65
Прийняття рішень у полі третьої інформаційної ситуації.;67
Прийняття рішень у полі четвертої інформаційної ситуації.;68
Прийняття рішень у полі шостої інформаційної ситуації.;70
Раціональний вибір та аксіоми раціонального поводження в економіці.;21
Система постулатів стосовно ризику як економічної категорії.;28
Складові прийняття у правлінських рішень.;2
Способи кодування параметрів задачі для використання у прийнятті рішення інструментарію генетичного алгоритму. Детально пояснять двійкове кодування.;41
Статистичні методи обробки експертної інформації.;52
Стисло опишіть основні кроки розпливчастого методу аналізу ієрархій.;61
Структура інтелектуальної системи прийняття рішень.;6
Сутність поняття «Інтелектуальна система прийняття рішень».;7
Сутність ризику. Його суб’єктивність та об’єктивність.;27
Сутність якісного аналізу ризику.;30
Суть дефазифікації. Методи дефазифікації. Наведіть приклад.;35
Суть навчання штучних нейронних мереж та його оцінювання.;76
Суть понять «дані» та «знання». Покажіть між ними відмінність.;14
Суть теореми про схеми.;44
Суть теоретико-ігрового підходу в прийнятті рішень з урахуванням множини цілей.;71
Схема експертного оцінювання з урахуванням послідовності залучення і функцій основних груп суб‘єктів.;47
Узагальнений алгоритм вимірювання певного виду економічного ризику.;29
Функції вибору та операції над ними.;22
Функція належності та методи її побудови.;36
Штучний нейрон та його складові.;74
Що таке задачі оптимізації? У яких випадках застосування інструментарію генетичного алгоритму є ефективнішим за традиційні методи оптимізації.;40
