- •1. Дайте визначення таким поняттям як рішення, управлінське рішення, прийняття рішення. Перелічіть засади, на яких ґрунтується прийняття управлінських рішень.
- •2. Складові прийняття управлінських рішень.
- •3. Етапи розгорнутого процесу прийняття рішень. Охарактеризуйте коротко кожен з них.
- •4. Характерні помилки, які можуть траплятися у процесі прийняття рішень.
- •5. Алгоритм та його місце в теорії інтелектуальних систем прийняття рішень.
- •6. Структура інтелектуальної системи прийняття рішень.
- •7. Сутність поняття «Інтелектуальна система прийняття рішень».
- •8. Концептуальні положення системної парадигми.
- •9. Переваги та недоліки системної парадигми.
- •10. Принципи системного аналізу.
- •11. Основні методи системного аналізу.
- •12. Відмінності між класичним та новітнім системними підходами стосовно прийняття рішень.
- •13. Охарактеризуйте стисло суть кроків вирішення проблем та прийняття рішень.
- •14. Суть понять «дані» та «знання». Покажіть між ними відмінність.
- •15. Суть вимірності об’єкта. Шкали.
- •16. Особливості представлення знань в іспр.
- •17. Представлення знань в іспр за допомогою логічної моделі. Навести приклад.
- •18. Представлення знань в іспр за допомогою семантичних мереж. Навести приклад.
- •19. Представлення знань в іспр за допомогою фреймової моделі. Навести приклад.
- •20. Представлення знань в іспр за допомогою продукційної моделі. Навести приклад.
- •21. Раціональний вибір та аксіоми раціонального поводження в економіці.
- •22. Функції вибору та операції над ними.
- •23. Дерево рішень. Прийняття рішень за його допомогою.
- •24. Суть нераціонального поводження. Евристики та зміщення.
- •25. Теорія проспектів. Її відмінність від теорії корисності.
- •26. Види невизначеності та причини її виникнення.
- •27. Сутність ризику. Його суб’єктивність та об’єктивність.
- •28. Система постулатів стосовно ризику як економічної категорії.
- •29. Узагальнений алгоритм вимірювання певного виду економічного ризику
- •30. Сутність якісного аналізу ризику
- •31. Кількісні показники оцінки ступеня ризику в абсолютному вираженні.
- •32. Кількісні показники оцінки ступеня ризику у відносному вираженні
- •33. Визначення нечіткої множини та її властивості.
- •34. Операції над нечіткими множинами. Задати універсальну множину та дві нечіткі множини на ній та здійснити всі можливі операції над ними.
- •35. Суть дефазифікації. Методи дефазифікації. Наведіть приклад.
- •36. Функція належності та методи її побудови.
- •37. Нечітке відношення та його властивості.
- •38. Суть прийняття рішення за принципом Белмана–Заде.
- •39. Кроки нечіткого виводу в загальному випадку.
- •40, Що таке задачі оптимізації? у яких випадках застосування інструментарію генетичного алгоритму є ефективнішим за традиційні методи оптимізації.
- •41. Способи кодування параметрів задачі для використання у прийнятті рішення інструментарію генетичного алгоритму. Детально пояснять двійкове кодування.
- •42. Основна термінологія, що використовується в генетичному алгоритмі.
- •43. Основі кроки класичного генетичного алгоритму. Опишіть їх.
- •45. Оператори генетичного алгоритму.
- •46. Експертна система оцінювання та принципи, на яких вона ґрунтується.
- •47. Схема експертного оцінювання з урахуванням послідовності залучення і функцій основних груп суб'єктів.
- •48. Етапи процесу експертного оцінювання
- •49. Методи колективної роботи експертної групи
- •50. Методи отримання індивідуальної думки членів експертної групи.
- •51. Задачі експертного оцінювання.
- •52. Статистичні методи обробки експертної інформації.
- •53. Якісна модель опр.
- •54. Способи якісного вимірювання оцінок альтернатив за критеріями.
- •55. Метод запрос. (Замкнуті Процедури у Опорних Ситуацій)
- •56. Метод аналізу ієрархій.
- •57.Суть багатокритеріальних задач прийняття рішень.
- •58. Назвіть типові багатокритеріальні задачі та стисло опишіть одну з них.
- •59. Кроки процесу розв‘язування багатокритеріальної задачі.
- •60. Суть методу використання гіперболічної функції для розв’язування багатокритеріальної задачі.
- •61. Стисло опишіть основні кроки розпливчастого методу аналізу ієрархій.
- •62. Гра та її складові.
- •63. Класифікація інформаційних ситуацій.
- •64. Інгредієнт функціонала оцінювання
- •65. Прийняття рішень у полі першої інформаційної ситуації.
- •66. Прийняття рішень у полі другої інформаційної ситуації.
- •67. Прийняття рішень у полі третьої інформаційної ситуації.
- •68. Прийняття рішень у полі четвертої інформаційної
- •69. Прийняття рішень у полі п'ятої інформаційної ситуації.
- •70. Прийняття рішень у полі шостої інформаційної ситуації.
- •71. Суть теоретико-ігрового підходу в прийнятті рішень з урахуванням
- •72. Ігровий розпливчастий метод аналізу ієрархій (ірмаі).
- •73. Стисло охарактеризуйте теоретико-ігрову концепцію вибору портфеля.
- •75. Одношарові та багатошарові штучні нейронні мережі. Їх архітектурні особливості. Розрахунок вихідного вектору.
- •76. Суть навчання штучних нейронних мереж та його оцінювання.
- •77. Правила навчання штучних нейронних мереж.
- •78. Назвіть різні структури нейронних мереж та для однієї з них наведіть алгоритм її навчання.
- •79. Особливості сумісного використання генетичних алгоритмів та штучних нейронних мереж.
- •80. Основні характеристики штучних нечітких нейронних мереж.
75. Одношарові та багатошарові штучні нейронні мережі. Їх архітектурні особливості. Розрахунок вихідного вектору.
Хоча один нейрон і здатний виконувати прості процедури розпізнавання, сила нейронних обчислень виникає від з'єднань нейронів в мережах. Проста мережа складається з групи нейронів, створюючих шар, як показано в правій частині рисунка. Відзначимо, що вершини-круги зліва служать лише для розподілу вхідних сигналів. Вони не виконують будь-яких обчислень, і тому не вважатимуться шаром. З цієї причини вони позначені кругами, щоб відрізняти їх від обчислюючих нейронів, позначених квадратами. Кожен елемент з множини входів Х окремою вагою сполучений з кожним штучним нейроном. Кожен нейрон видає зважену суму входів в мережу. У штучних і біологічних мережах багато з'єднань можуть бути відсутніми, можуть мати місце також з'єднання між виходами і входами елементів в шарі.
Зручно вважати вагу елементами матриці W. Матриця має m рядків і n стовпців, де m - число входів, а n - число нейронів. Наприклад, w3,2 - це вага, що пов'язує третій вхід з другим нейроном. Таким чином, обчислення вихідного вектора Y, компонентами якого є виходи OUT нейронів, зводиться до матричного множення Y = XW, де Y і Х - вектори-рядки.
Багатошарові мережі володіють значно більшими можливостями, ніж одношарові. Проте багатошарові мережі можуть привести до збільшення обчислювальної потужності в порівнянні з одношаровими лише в тому випадку, якщо активаційна функція між шарами буде нелінійною. Обчислення виходу шару полягає в множенні вхідного вектора на першу вагову матрицю з подальшим множенням (якщо відсутня нелінійна активаційна функція) результуючого вектора на другу вагову матрицю (XW1)W2. Оскільки множення матриць асоціативне, то X(W1W2). Це показує, що двошарова лінійна мережа еквівалентна одному шару з ваговою матрицею, рівною добутку двох вагових матриць. Отже, для лінійної активіаційної функції будь-яка багатошарова лінійна мережа може бути замінена еквівалентною одношаровою мережею.
76. Суть навчання штучних нейронних мереж та його оцінювання.
Здатність до навчання є фундаментальною властивістю мозку. У контексті штучних нейронних мереж процес навчання може розглядатися як налаштування архітектури мережі і вагів зв’язків для ефективного виконання спеціального завдання. Зазвичай нейронна мережа повинна настроїти ваги зв’язків за наявною навчальною вибіркою. Функціонування мережі поліпшується із ітеративним налаштуванням вагових коефіцієнтів. Властивість мережі навчатися на прикладах робить їх привабливішими в порівнянні із системами, які наслідують певну систему правил функціонування, сформульовану експертами. Для конструювання процесу навчання, перш за все, необхідно мати модель зовнішнього середовища, в якій функціонує мережа. Ця модель визначає парадигму навчання. По-друге, необхідно зрозуміти, як модифікувати вагові параметри мережі – які правила навчання управляють процесом налаштування. Алгоритм навчання означає процедуру, в якій використовуються правила навчання для налаштування вагів. Існують три парадигми навчання: «з вчителем», «без вчителя» (самонавчання) і змішана. Посилений варіант навчання з вчителем передбачає, що відома тільки критична оцінка правильності виходу нейронної мережі, але не самі правильні значення виходу. Навчання без вчителя не вимагає знання правильних відповідей на кожен приклад навчальної вибірки. В цьому випадку розкривається внутрішня структура даних або кореляції між зразками в системі даних, що дозволяє розподілити зразки по категоріях. При змішаному навчанні частина вагів визначається за допомогою навчання з вчителем, тоді як остання виходить за допомогою самонавчання. Теорія навчання розглядає три фундаментальні властивості, пов’язані з навчанням за прикладами: ємність, складність зразків і обчислювальна складність. Під ємністю розуміється, скільки зразків може запам’ятати мережа, і які функції і межі ухвалення рішень можуть бути на ній сформовані. Складність зразків визначає число навчальних прикладів, необхідних для досягнення здатності мережі до узагальнення.
