- •1. Дайте визначення таким поняттям як рішення, управлінське рішення, прийняття рішення. Перелічіть засади, на яких ґрунтується прийняття управлінських рішень.
- •2. Складові прийняття управлінських рішень.
- •3. Етапи розгорнутого процесу прийняття рішень. Охарактеризуйте коротко кожен з них.
- •4. Характерні помилки, які можуть траплятися у процесі прийняття рішень.
- •5. Алгоритм та його місце в теорії інтелектуальних систем прийняття рішень.
- •6. Структура інтелектуальної системи прийняття рішень.
- •7. Сутність поняття «Інтелектуальна система прийняття рішень».
- •8. Концептуальні положення системної парадигми.
- •9. Переваги та недоліки системної парадигми.
- •10. Принципи системного аналізу.
- •11. Основні методи системного аналізу.
- •12. Відмінності між класичним та новітнім системними підходами стосовно прийняття рішень.
- •13. Охарактеризуйте стисло суть кроків вирішення проблем та прийняття рішень.
- •14. Суть понять «дані» та «знання». Покажіть між ними відмінність.
- •15. Суть вимірності об’єкта. Шкали.
- •16. Особливості представлення знань в іспр.
- •17. Представлення знань в іспр за допомогою логічної моделі. Навести приклад.
- •18. Представлення знань в іспр за допомогою семантичних мереж. Навести приклад.
- •19. Представлення знань в іспр за допомогою фреймової моделі. Навести приклад.
- •20. Представлення знань в іспр за допомогою продукційної моделі. Навести приклад.
- •21. Раціональний вибір та аксіоми раціонального поводження в економіці.
- •22. Функції вибору та операції над ними.
- •23. Дерево рішень. Прийняття рішень за його допомогою.
- •24. Суть нераціонального поводження. Евристики та зміщення.
- •25. Теорія проспектів. Її відмінність від теорії корисності.
- •26. Види невизначеності та причини її виникнення.
- •27. Сутність ризику. Його суб’єктивність та об’єктивність.
- •28. Система постулатів стосовно ризику як економічної категорії.
- •29. Узагальнений алгоритм вимірювання певного виду економічного ризику
- •30. Сутність якісного аналізу ризику
- •31. Кількісні показники оцінки ступеня ризику в абсолютному вираженні.
- •32. Кількісні показники оцінки ступеня ризику у відносному вираженні
- •33. Визначення нечіткої множини та її властивості.
- •34. Операції над нечіткими множинами. Задати універсальну множину та дві нечіткі множини на ній та здійснити всі можливі операції над ними.
- •35. Суть дефазифікації. Методи дефазифікації. Наведіть приклад.
- •36. Функція належності та методи її побудови.
- •37. Нечітке відношення та його властивості.
- •38. Суть прийняття рішення за принципом Белмана–Заде.
- •39. Кроки нечіткого виводу в загальному випадку.
- •40, Що таке задачі оптимізації? у яких випадках застосування інструментарію генетичного алгоритму є ефективнішим за традиційні методи оптимізації.
- •41. Способи кодування параметрів задачі для використання у прийнятті рішення інструментарію генетичного алгоритму. Детально пояснять двійкове кодування.
- •42. Основна термінологія, що використовується в генетичному алгоритмі.
- •43. Основі кроки класичного генетичного алгоритму. Опишіть їх.
- •45. Оператори генетичного алгоритму.
- •46. Експертна система оцінювання та принципи, на яких вона ґрунтується.
- •47. Схема експертного оцінювання з урахуванням послідовності залучення і функцій основних груп суб'єктів.
- •48. Етапи процесу експертного оцінювання
- •49. Методи колективної роботи експертної групи
- •50. Методи отримання індивідуальної думки членів експертної групи.
- •51. Задачі експертного оцінювання.
- •52. Статистичні методи обробки експертної інформації.
- •53. Якісна модель опр.
- •54. Способи якісного вимірювання оцінок альтернатив за критеріями.
- •55. Метод запрос. (Замкнуті Процедури у Опорних Ситуацій)
- •56. Метод аналізу ієрархій.
- •57.Суть багатокритеріальних задач прийняття рішень.
- •58. Назвіть типові багатокритеріальні задачі та стисло опишіть одну з них.
- •59. Кроки процесу розв‘язування багатокритеріальної задачі.
- •60. Суть методу використання гіперболічної функції для розв’язування багатокритеріальної задачі.
- •61. Стисло опишіть основні кроки розпливчастого методу аналізу ієрархій.
- •62. Гра та її складові.
- •63. Класифікація інформаційних ситуацій.
- •64. Інгредієнт функціонала оцінювання
- •65. Прийняття рішень у полі першої інформаційної ситуації.
- •66. Прийняття рішень у полі другої інформаційної ситуації.
- •67. Прийняття рішень у полі третьої інформаційної ситуації.
- •68. Прийняття рішень у полі четвертої інформаційної
- •69. Прийняття рішень у полі п'ятої інформаційної ситуації.
- •70. Прийняття рішень у полі шостої інформаційної ситуації.
- •71. Суть теоретико-ігрового підходу в прийнятті рішень з урахуванням
- •72. Ігровий розпливчастий метод аналізу ієрархій (ірмаі).
- •73. Стисло охарактеризуйте теоретико-ігрову концепцію вибору портфеля.
- •75. Одношарові та багатошарові штучні нейронні мережі. Їх архітектурні особливості. Розрахунок вихідного вектору.
- •76. Суть навчання штучних нейронних мереж та його оцінювання.
- •77. Правила навчання штучних нейронних мереж.
- •78. Назвіть різні структури нейронних мереж та для однієї з них наведіть алгоритм її навчання.
- •79. Особливості сумісного використання генетичних алгоритмів та штучних нейронних мереж.
- •80. Основні характеристики штучних нечітких нейронних мереж.
73. Стисло охарактеризуйте теоретико-ігрову концепцію вибору портфеля.
У класичній теорії портфеля приймається гіпотеза щодо стаціонарності (тобто незмінності з плином часу) таких характеристик активів, як сподівана норма прибутку, дисперсія тощо. Але, як показують дослідження, це допущення часто порушується, тобто характеристики активів є функціями часу і при цьому залежність одних від часу є суттєвою, інших — про-являється дещо меншою мірою. Крім того, прийняття гіпотези щодо стаціонарності норм прибутків активів не дозволяє скорис-татись усією наявною інформацією, особливо у разі великої кіль-кості нестаціонарних станів ринку. У багатьох випадках отримані на основі достовірної інформації оцінки числових показників, обраних для інвестування активів (сподівані норми прибутку, ди-сперсії, коваріації норм прибутку тощо), неадекватно характери-зують відповідні випадкові величини та їх сукупність.
У подальших викладках пропонуються певні модифікації моделі Марковіца для різних інформаційних ситуацій. Для кожної з них визначається сутність такого поняття, як ефективні портфелі, розглядаються різні підходи до постановки задачі ви-бору портфеля з наперед заданими характеристиками та обґрун-товується можливість використання теоретико-ігрової концепції для розв’язання цієї задачі. Суттєвою перевагою теоретико-ігрових методів пошуку ефективного портфеля є їх конструктив-ність з погляду реалізації. Зазначимо, що базою для реалізації те-оретико-ігрових моделей є методи математичного програмуван-ня. Відповідні пакети прикладних програм входять у математичне забезпечення сучасної комп’ютерної техніки. Одним з основних і найпридатніших для застосування підхо-дів до оцінювання параметрів імовірнісної моделі ринку і число-вих характеристик активів є використання ретроспективних да-них. Але при цьому потрібно пам’ятати, що отримані оцінки не є абсолютно надійними, що вони не є точним прогнозом майбутніх значень відповідних показників. Аналогічно не можна вважати, що оцінки, отримані на основі інших підходів (методів), є адеква-тним відображенням дійсності, тобто, що є істинними значення ймовірностей сценаріїв, можливі значення норм прибутків акти-вів для відповідних станів ринку, всіх числових характеристик активів і портфелів, що обчислюються на їх основі. Запропоновані модифікації моделі Марковіца дозволяють ураховувати фінансові умови, що можуть задаватись в конкрет-них задачах, і тим самим обмежувати вибір типу портфеля.
74. Штучний нейрон та його складові.
Нервова система людини побудована з елементів (нейронів), має приголомшуючу складність. Близько 1011 нейронів беруть участь в приблизно 1015 передаючих зв'язках, що мають довжину метр і більше. Кожен нейрон володіє багатьма якостями, спільними з іншими елементами тіла, але його унікальною здатністю є прийом, обробка і передача електрохімічних сигналів по нервових шляхах, які утворюють комунікаційну систему мозку. Дендрити (входи нейрона) йдуть від тіла нервової клітини до інших нейронів, де вони приймають сигнали в точках з'єднання (синапсах). Прийняті синапсом вхідні сигнали підводяться до тіла нейрона. Тут вони підсумовуються, причому одні входи стимулюють активізацію нейрона, а інші – зниження його активності. Коли сумарна активність (збудження) нейрона перевищує деякий поріг, нейрон переходить в активний стан, посилаючи по аксону (виходу нейрона) сигнал іншим нейронам. В штучному нейроні сигнали передаються по зваженим зв’язкам (connection), з кожним з яких пов’язаний ваговий коефіцієнт (weighting coefficient) або вага. Штучний нейрон імітує в першому наближенні властивості біологічного нейрона. На вхід штучного нейрона поступає множина сигналів, які є виходами інших нейронів. Кожен вхід множиться на відповідну вагу, аналогічну його синаптичній силі, і всі виходи підсумовуються, визначаючи рівень активації нейрона.
