
- •Аннотация к вопросам для Госэкзаменов по Информационным Системам и Вычислительным процессам
- •1. Модели данных 4
- •2. Прикладные системы 10
- •3. Анализ и проектирование систем 25
- •4. Коллективная разработка систем 35
- •5. Архитектура систем 38
- •6. Программирование 42
- •7. Формальные языки и методы трансляции 44
- •8. Методы распределения памяти и доступа к данным 51
- •9. Сети Петри 57
- •1. Модели данных
- •1.1. Концептуальная и логическая модель данных. Модель «сущность связь» (er-модель)
- •1.2. Полная функциональная зависимость. Вторая нормальная форма (2нф). Приведение отношения к 2нф
- •1.3. Транзитивная зависимость. Третья нормальная форма (3нф). Приведение отношения к 3нф
- •1.4. Операции реляционной алгебры: булевы операции, операции выбора, проекции, соединения, деления
- •1.5. Операторы расщепления и фактора. Их применение для организации работы с распределенными данными
- •1.6. Транзакции в базах данных Понятие транзакции
- •Принципы транзакций (acid)
- •Модели транзакций
- •2. Прикладные системы
- •2.1. Классификация современных программных прикладных систем
- •2.2. Требования к качеству прикладных программных систем: адекватность технологии, удобство использования, устойчивость, сопровождаемость, защищенность, переносимость
- •Адекватность технологии предметной области
- •Удобство использования
- •Сопровождаемость
- •Устойчивость
- •Защищенность
- •Переносимость
- •2.3. Условия и способы тиражирования прикладных программных систем
- •2.5. Жизненный цикл программных систем. Этапы жизненного цикла
- •2.6. Модели жизненного цикла – каскадная, поэтапная, спиральная, инкрементная. Области их применения
- •2.7. Средства автоматизации проектирования (case-средства)
- •2.8. Оценка параметров программной системы. Мера, метрика. Анализ риска Оценка параметров программной системы
- •Мера и метрика
- •Анализ рисков и первичная оценка
- •2.9. Размерно-ориентированные метрики: правила оценивания, область применимости
- •Выполнение оценки проекта
- •Пример оценки проекта
- •Достоинства и недостатки
- •3. Анализ и проектирование систем
- •3.1. Анализ требований, его роль в жизненном цикле создания программной системы. Основные задачи анализа требований. Системный структурный анализ
- •3.2. Методология sadt (idef0). Ее реализация в case-средстве bPwin
- •Использование case-средства bPwin для построения idef0-модели
- •3.3. Моделирование потоков данных и процессов их обработки. Построение диаграмм потоков данных
- •Диаграммы потоков данных
- •Диаграммы потоков данных в методологии Гейна-Сарсона
- •Использование case-средства bPwin для построения дпд
- •4. Коллективная разработка систем
- •4.1. Обоснование необходимости. Проблемы. Типы коллективов программистов Проблема
- •Профессиональные особенности
- •Типы коллективов программистов
- •Традиционная бригада
- •Бригада без персонализации
- •Бригада главного программиста
- •4.2. Условия работы коллективов программистов: физическая, социальная, административная обстановки
- •Стимулы
- •4.3. Взаимодействие участников программного проекта. Их роли в коллективе разработчиков Профессиональные особенности
- •Технические роли в бригаде
- •Психологические роли в бригаде
- •5. Архитектура систем
- •5.1. Причины декомпозиции программы на модули (содержательные и технические аспекты). Декомпозиция как способ борьбы со сложностью
- •5.2. Модуль, его информационная закрытость. Интерфейс и реализация. Связность модуля, уровни связности
- •5.3. Сцепление модулей, уровни сцепления. Модели управления модульной системой
- •6. Программирование
- •6.1. Объектный подход к программированию. Объект и класс. Инкапсуляция, наследование, полиморфизм. Абстрактные и интерфейсные классы
- •6.2. Классы в современных системах программирования. Общие, собственные и защищенные области. Свойства, их назначение, описание и использование. Владелец и родитель класса
- •7. Формальные языки и методы трансляции
- •7.1. Право- и леволинейные грамматики. Регулярные (автоматные) грамматики. Регулярные множества и праволинейные грамматики
- •7.2. Автоматы с магазинной памятью (мп-автоматы). Детерминированные и недетерминированные мп-автоматы. Построение эквивалентного мп-автомата по кс-грамматике
- •7.3. Восходящий анализ кс-языков без возвратов. Lr(k)-грамматики. Грамматики простого предшествования. Алгоритм «перенос-свертка» для грамматики простого предшествования
- •7.4. Алгоритмы удаления пустых и недостижимых символов в кс-грамматике. Нормальные формы кс-грамматик (Хомского и Грейбах). Устранение левой рекурсии в грамматике
- •7.5. Компиляторы и интерпретаторы. Архитектура компилятора. Фазы и этапы компиляции. Препроцессоры
- •7.6. Дерево вывода для кс-грамматик. Восходящий и нисходящий синтаксический анализ. Алгоритм нисходящего разбора с возвратами
- •7.7. Промежуточные представления программ: атрибутно-синтаксическое дерево, триадное представление, тетрады, обратная польская запись. Байт-коды внутреннего представления (Java-код, p-код и др.)
- •7.8. Ll(k)-грамматики, соотношение классов ll(k). Множества first(k) и follow(k) и их построение. Разделенная грамматика
- •7.9. Метод рекурсивного спуска построения синтаксического анализатора
- •7.10. Способы описания синтаксиса языков программирования. Диаграммы Вирта, расширенная форма Бэкуса-Наура
- •7.11. Работа с регулярными выражениями в языках программирования (c#, php). Описание типов xml-документов с помощью грамматики (dtd)
- •8. Методы распределения памяти и доступа к данным
- •8.1. Простые методы динамического распределения памяти: стек, дек, список блоков постоянной длины
- •Простейшее распределение памяти
- •Выделение памяти блоками постоянной длины
- •8.2. Методы динамического распределения памяти, основанные на списках блоков переменной длины
- •8.3. Методы доступа к данным, основанные на индексах: индексно-последовательный и индексно-произвольный Индексные методы
- •Индексно-последовательный метод
- •Индексно-произвольный метод
- •8.4. Методы доступа к данным, основанные на инвертированных списках и битовых картах Инвертированные списки
- •Битовые карты
- •8.5. Алгоритмы хеширования, основанные на методах деления, умножения и деления многочленов Метод деления
- •Метод умножения
- •Деление многочленов
- •8.6. Алгоритмы разрешения коллизий в перемешанных таблицах, основанные на методах внешних и внутренних цепочек Метод внешних цепочек
- •Метод внутренних цепочек
- •9. Сети Петри
- •9.1. Определение и основные понятия сетей Петри. Структура, графы, маркировка Структура сетей Петри
- •Графы сетей Петри
- •Маркировка сетей Петри
- •9.2. Моделирование сетями Петри задач о производителе/потребителе и о чтении/записи Задача о производителе и потребителе
- •Задача о чтении/записи
- •9.3. Безопасность и ограниченность сетей Петри Безопасность
- •Ограниченность
- •9.4. Активность сетей Петри
- •9.5. Достижимость и покрываемость в сетях Петри
- •9.6. Дерево достижимости сети Петри. Алгоритм построения дерева достижимости Дерево достижимости
- •Алгоритм построения дерева достижимости
- •9.7. Применение дерева достижимости сети Петри для проверки безопасности и ограниченности.
- •9.8. Применение дерева достижимости сети Петри для проверки покрываемости
- •Литература Основная
- •Дополнительная
- •Формальные языки и методы трансляции
- •Методы доступа к данным и распределения памяти
- •Сети Петри
2.2. Требования к качеству прикладных программных систем: адекватность технологии, удобство использования, устойчивость, сопровождаемость, защищенность, переносимость
Под качеством программной системы (ПС) понимается совокупность свойств, которые характеризуют её способность удовлетворять заданным требованиям. Качество разработанного системы – определяющий фактор успешного её внедрения. Несмотря на это, понятие качества ПС достаточно размыто и интерпретируется по-разному в зависимости от точки зрения. Так, заказчик ПС доволен, если система ликвидировала какое-то узкое место в его производстве, обошлась дешево и не создала новых проблем. В пакете расчетных программ ценится скорость и точность расчетов. Пользователь информационной системы удовлетворён удобством работы с системой, которая его не утомляет. В некоторых случаях (например, нужно опередить конкурентов на рынке) важно небольшое время реализации. Сопровождающий программист считает систему качественной, если её можно легко адаптировать под изменяющиеся условия эксплуатации.
Существует ряд стандартов, посвященных качеству, например, ГОСТ Р ИСО/МЭК 12119 «Информационная технология. Пакеты программ. Требования к качеству и тестирование» или ГОСТ РВ 51987 «Информационная технология. Комплекс стандартов на автоматизированные системы. Требования и показатели качества функционирования информационных систем. Общие положения». По стандарту ISO 9126 рекомендуется использовать шесть основных групп характеристик качества программного средства, детализируемых через 21 характеристику:
функциональная пригодность (пригодность для применения, точность, защищенность, способность к взаимодействию, соответствие стандартам и правилам проектирования);
надежность (уровень завершенности, устойчивость к ошибкам, перезапускаемость);
применимость (понятность, изучаемость, простота использования);
эффективность (ресурсная экономичность, временная экономичность);
сопровождаемость (удобство для анализа, возможность модификации, стабильность, тестируемость);
переносимость (адаптируемость, структурированность, замещаемость, внедряемость).
Однако, это не единственная точка зрения на набор характеристик. В среде программистов-профессионалов в течение многих лет продолжаются дискуссии на эту тему. Так, Гласс [13] на основании своего богатого опыта разработки и сопровождения программных систем приводит несколько иной набор признаков качества:
переносимость;
надёжность;
эффективность;
удобство работы;
тестируемость;
понятность;
модифицируемость.
Купер [18] предлагает за основное требование к качеству систем, ориентированных на пользователя, взять простоту взаимодействия с ними.
Анализируя множество положительных оценок программных систем, выделим следующие основные требования, которыми должна обладать качественная ПС:
адекватность технологии предметной области;
удобство использования;
сопровождаемость;
устойчивость;
защищенность;
переносимость.
Эти требования похожи на требования стандарта, за исключением того, что в них не включается эффективность, но отдельно добавлена защищённость. Эффективность – полезное требование, но в современных условиях, когда доступны значительные вычислительные мощности, оно уже не первостепенное. Если же система не имеет необходимого уровня защиты, она вряд ли имеет перспективы. Поэтому защищённость следует вынести из требования функциональная пригодности в отдельное. С Глассом можно было бы согласиться, но он в свой список не включает функциональную пригодность, считая её естественной. К сожалению, это не всегда так.
Заметим, что даже строго следуя стандартам качества, но применяя их формально, без учёта специфики системы, можно создать продукт весьма низкого качества.