
- •Конспект лекций по информатике
- •1 Семестр Содержание
- •Тема 5 Модели решения функциональных и вычислительных задач 45
- •Тема 1 введение в информатику
- •Лекция 1 основные понятия информатики
- •Появление и развитие информатики
- •Предмет, задачи и методы информатики
- •Структура информатики
- •Тема 2 информация и информационные процессы
- •Лекция 2 информация и информационные процессы
- •Понятие информации. Развитие представлений об информации
- •Методы воспроизведения и обработки данных
- •Свойства информации
- •Основные процессы преобразования данных. Информационный обмен
- •Измерение количества информации
- •Классификация электронных вычислительных машин
- •Понятие архитектуры и структуры эвм
- •Персональные компьютеры. Типовой комплект персонального компьютера
- •Структура персонального компьютера (пк)
- •Системная (материнская плата)
- •Тема 4 программные средства реализации информационных процессов
- •Лекция 5 общая характеристика программного обеспечения
- •Основные понятия программного обеспечения
- •Постановка задачи Алгоритмизация решения задачПрограммирование
- •Категории специалистов, занятых разработкой и эксплуатацией программ
- •Характеристика программного продукта
- •Жизненный цикл программного продукта
- •Защита программных продуктов
- •Программные системы защиты от несанкционированного копирования
- •Правовые методы защиты программных продуктов и баз данных
- •Классификация программных продуктов
- •Лекция 6 системное программное обеспечение
- •Структура системного программного обеспечения
- •Понятие операционной системы и её функции
- •Состав операционной системы
- •Характеристики операционной системы
- •Классификация операционных систем
- •Операционные системы семейства Windows
- •Операционные системы семейства Unix, операционная система Linux
- •Основные тенденции развития ос
- •Сервисное системное программное обеспечение
- •Тема 5 Модели решения функциональных и вычислительных задач
- •Лекция 7 Логические основы компьютера
- •Виды логических функций (операций)
- •Лекция 8 системы счисления
- •Понятие системы счисления. Виды систем счисления.
- •Если справа - прибавляется.
- •В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения одинаковых цифр, стоящих в соседних позициях числа.
- •Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим.
- •В двоичной системе счисления основание равно 2, а алфавит состоит из двух цифр (0 и 1).
- •Перевод чисел в позиционных системах счисления Правила перевода целых чисел
- •Правила перевода дробных чисел
- •Необходимо записать число в развернутой форме и вычислить его значение.
- •2.2. Перевод чисел из десятичной системы в двоичную, восьмеричную и шестнадцатеричную
- •Алгоритм перевода целого десятичного числа в двоичное будет следующим:
- •Представление информации в эвм
Классификация электронных вычислительных машин
Электронные вычислительные машины (ЭВМ)- в настоящее время более применимый термин - компьютеры- являются основным элементом информационной системы. В общем случае ЭВМ можно классифицировать по ряду признаков.
1. По принципу действия ЭВМ делятся на три больших класса в зависимости от формы представления информации, с которой они работают:
АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, то есть в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);
ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме;
ГВМ – гибридные вычислительные машины комбинированного действия работают с информацией, представленной как в цифровой, так и в аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
2. По назначению ЭВМ можно разделить на три группы:
универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах. Характерными чертами универсальных ЭВМ является: высокая производительность; разнообразие форм обрабатываемых данных при большом диапазоне их изменения и высокой степени их представления; обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных; большая емкость оперативной памяти; развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств;
проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами. Они используются для регистрации, накопления и обработки относительно небольших объемов данных, выполнения расчетов по относительно несложным алгоритмам. Проблемно-ориентированные ЭВМ обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами;
специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Узкая ориентация ЭВМ позволяет четко определить их структуру, существенно снизить сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения для согласования и сопряжения работы узлов вычислительных систем или специализированного технологического оборудования.
3. По размерам и функциональным возможностям ЭВМ делятся на:
сверхбольшие (суперЭВМ) – мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду, и с объемом оперативной памяти в десятки Гбайт.
Для оценки производительности компьютеров в мире используется понятие количество операций над числами с плавающей запятой в секунду - флопс (floating – point operations per second). Не так давно супер ЭВМ преодолели производительность в один терафлопс – триллион (10 12) операций в секунду. СуперЭВМ состоят, как правило, с очень большого числа процессоров и реализуют принцип параллельных вычислений. СуперЭВМ ASCII Red, например, содержит 9298 микропроцессоров Intel Pentium Pro. По оценке специалистов к 2030 году появятся суперЭВМ c производительностью 10 21 флопс.
большие ЭВМ чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие производительность десятки миллионов операций в секунду, емкость памяти до 1000 Мбайт и многопользовательский режим работы. Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Родоначальником современных больших ЭВМ является фирма IBM.
малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ. Мини-ЭВМ имеют быстродействие десятки миллионов операций в секунду, объем оперативной памяти 512 Мбайт, и могут также поддерживать многопользовательский режим.
сверхмалые (микро-ЭВМ) обязаны своим появлением изобретению микропроцессора. Именно наличие микропроцессора служило первоначально определяющим признаком микроЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Микро-ЭВМ делятся на универсальные и специализированные; в свою очередь и универсальные и специализированные микро-ЭВМ делятся на многопользовательские и однопользовательские:
Универсальные многопользовательские микроЭВМ представляют собой мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
Универсальная однопользовательская микро-ЭВМ – персональный компьютер (ПК).
Специализированные многопользовательские микро-ЭВМ используются в сетевых вычислительных системах и называются серверами.
Специализированные однопользовательские микро-ЭВМ представляют собой рабочие станции, и используются для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Следует отметить, что приведенная выше классификация ЭВМ носит достаточно условный характер и может быть расширена по ряду других признаков.