- •Часть 2. Волновые процессы. Волновая и квантовая оптика. Квантовая механика. Многоэлектронные атомы
- •Содержание
- •Волны. Плоские и сферические волны
- •1.2. Поток энергии волны
- •1.3. Групповая скорость волны
- •2.1. Интерференция волн
- •2.2. Стоячие волны
- •2.3. Звуковые волны
- •2.4. Эффект Доплера
- •2.5. Электромагнитные волны
- •2.6. Энергия электромагнитной волны. Вектор Умова – Пойнтинга
- •3.1. Отражение и преломление света. Полное отражение
- •3.2. Тонкая линза. Формула линзы
- •3. 3. Основные фотометрические характеристики
- •4.1. Интерференция световых волн. Когерентные источники света
- •4.2. Пространственная и временная когерентности
- •4.3. Интерференция на тонкой пленке
- •4.4. Практическое применение явления интерференции. Интерферометры
- •5.1. Дифракция света. Принцип Гюйгенса – Френеля. Метод зон Френеля
- •5.2. Дифракция Френеля на круглом отверстии
- •5.3. Дифракция Фраунгофера на одной щели.
- •5.4. Дифракционная решетка
- •5.5. Дифракция рентгеновских лучей
- •6. 1. Взаимодействие света с веществом
- •6.2. Тепловое излучение. Закон Кихгофа
- •6.3. Законы теплового излучения
- •7.1. Внешний фотоэффект. Законы фотоэффекта
- •Для каждого вещества существует красная граница фотоэффекта νК – такая минимальная частота падающего излучения, ниже которой фотоэффект не наблюдается.
- •Ч Рис.7.2 исло фотоэлектронов, вырываемых из катода за единицу времени, пропорционально интенсивности света падающего на катод при неизменном спектральном составе.
- •7. 2. Эффект Комптона
- •7.3. Природа электромагнитного излучения
- •7.4. Опыты Резерфорда. Планетарная модель атома
- •7.5. Постулаты Бора. Опыты Франка и Герца
- •8.1. Спектры атома водорода по теории Бора
- •8.2. Волны де Бройля. Опыты, подтверждающие волновые свойства частиц
- •8.3. Соотношения неопределенностей Гейзенберга
- •9. 1. Вероятностный смысл волны де Бройля. Волновая функция
- •9. 2. Уравнение Шредингера
- •9.3. Микрочастица в прямоугольной потенциальной яме с бесконечно высокими стенками
- •10.1. Прохождение частиц через потенциальный барьер
- •10.2. Орбитальный момент импульса и магнитный момент электрона в классической и квантовой механике
- •10.3. Опыты Штерна и Герлаха. Спин электрона
- •11.1. Состояния электронов в атоме. Принцип Паули. Структура многоэлектронного атома
- •11.2. Рентгеновское излучение
- •11.3. Энергия молекулы
- •Библиографический список
4.4. Практическое применение явления интерференции. Интерферометры
Просветление оптики. На границе раздела воздух – стекло отражается 4% энергии световой волны. Поэтому при наличии в оптическом приборе достаточного количества линз, зеркал, преломляющих тел до наблюдателя доходит малая часть первоначальной энергии световой волны.
Рис. 4.8
Чтобы увеличить освещенность изображения с помощью интерференции убирают отраженные лучи. Для этого на поверхность линзы наносят тонкую пленку, у которой показатель преломления меньше, чем показатель преломления линзы. В этом случае, наряду с лучом 1, отраженным от поверхности линзы, возникает луч 2, отраженный от поверхности пленки (рис. 4.8а). Эти лучи должны быть когерентными, что бы отражаясь, они гасили дуг друга. Толщина пленки определяется из условия
.
В этом случае происходит перераспределение световой энергии; она вся проходит в линзу, отраженной волны не будет.
Определение качества обработки поверхностей. На исследуемую поверхность кладут плоскопараллельную пластинку так, чтобы создать воздушный зазор между исследуемой поверхностью и пластинкой (рис. 4.8б). По искажению картины интерференции можно обнаружить дефекты ее обработки (царапины, шероховатость), так как в места нахождения дефекта искажена правильная картина чередования светлых и темных полос.
Интерферометры. Это приборы, в которых наблюдаемая картина интерференции служит для практических целей (для точных измерений длин волн, размеров малых предметов, показателей преломления газов, определения шероховатости поверхностей деталей и др.).
Картина
интерференции получается пространственным
делением пучка света на два или большее
количество когерентных пучка, создания
между ними оптической разности хода и
затем наложения с целью получения
картины интерференции.
Существуют различные виды таких приборов; здесь рассматривается двух лучевой интерферометр Майкельсона (рис. 4.9).
Рис. 4.9
пластины В и А и попадает в зрительную трубу. Пластинка В необходима для того, чтобы создать одинаковые условия для лучей 1 и 2. Если зеркала 1 и 2 будут взаимно перпендикулярны, то на экране в зрительной трубе будет наблюдаться светлое или темное пятно. Для создания картины интерференции одно из зеркал немного наклоняют, это приводит к изменению оптической разности хода лучей, и на экране будут наблюдаться полосы равной толщины.
Если, например, вместо зеркала 1 поместить деталь, шероховатость которой надо определить, то по искажению линий интерференции можно определить степень шероховатости.
Если надо определить размер h малого предмета, то совместив один из концов этого предмета с зеркалом 2, перемещают это зеркало до другого конца предмета, считая число полос прошедших мимо указателя зрительной трубы. Тогда
,
где N – число темных полос, прошедших мимо указателя.
Лекция 5
