
- •Часть 1. Механика. Электричество и магнетизм. Колебания
- •1.1. Механика. Материальная точка. Движение материальной точки. Скорость и ускорение произвольно движущейся точки
- •1.2. Кинематика вращательного движения
- •1.3. Динамика движения материальной точки. Законы Ньютона
- •2.1. Закон всемирного тяготения. Сила тяготения, сила тяжести, вес тела
- •2.2. Неинерциальные системы отсчета. Силы инерции
- •2.3. Центр масс. Закон сохранения импульса
- •2.4. Кинетическая энергия. Работа. Мощность
- •2.5. Потенциальная энергия
- •3.1. Вращательное движение твердого тела. Момент инерции. Теорема Штейнера
- •3.2. Кинетическая энергия вращающегося твердого тела
- •3.3. Основное уравнение динамики вращательного движения
- •3.4. Силы трения. Статическое и кинематическое трение
- •Кинематическое трение
- •4.1. Условие неразрывности потока жидкости
- •4.2. Уравнение Бернулли
- •4.3. Сила внутреннего трения
- •4.4. Ламинарное и турбулентное течение
- •4.5. Преобразования Галилея. Принцип относительности Галилея
- •4.6. Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца
- •Никакими физическими опытами, находясь внутри исо, нельзя установить, движется она равномерно и прямолинейно или покоится;
- •Все законы физики выглядят, записываются одинаково во всех исо;
- •Все физические явления протекают одинаково во всех исо;
- •5.1. Следствия из преобразований Лоренца
- •5.2. Релятивистские выражения массы и импульса тела
- •5.3. Релятивистское выражение для энергии
- •6.1. Электрические заряды. Закон Кулона
- •6.2. Потенциальная энергия. Потенциал. Работа сил электрического поля
- •6.3. Напряженность поля. Принцип суперпозиции полей
- •6.4. Связь между потенциалом и напряженностью
- •6.5. Графическое изображение электростатических полей
- •7.1. Поток и циркуляция вектора электростатического поля.
- •7 .2. Применение теоремы Гаусса для расчета электростатических полей
- •7.3. Электрическое поле в диэлектрике
- •8.1. Поле заряженного проводника
- •8.2. Электроемкость уединенного проводника. Электроемкость конденсатора
- •8.3. Энергия заряженного тела, конденсатора. Энергия электрического поля
- •8.4. Сила и плотность тока. Законы Ома и Джоуля – Ленца
- •8.5. Электродвижущая сила. Закон Ома для неоднородного участка цепи
- •8.6. Правила Кирхгофа
- •9.1. Магнитное поле. Закон Био – Савара – Лапласа
- •9.2. Сила Лоренца. Закон Ампера
- •9.3. Теорема о циркуляции вектора магнитной индукции и теорема Гаусса для вектора
- •9.4. Магнитное поле в веществе
- •10.1. Опыты Фарадея. Явление электромагнитной индукции
- •10.2. Токи Фуко
- •10.3. Явления самоиндукции и взаимоиндукции
- •10.4. Второе уравнение Максвелла в интегральной форма. Ток смещения
- •10.5. Уравнения Максвелла
- •11.1. Гармонические колебания
- •11.2. Сложение гармонических колебаний
- •1. Сложение гармонических колебаний одного направления и одинаковой частоты
- •3. Сложение взаимно перпендикулярных колебаний.
- •12.1. Затухающие колебания
- •12.2. Вынужденные колебания
- •12.3. Вынужденные колебания в цепи переменного тока
- •12.4. Мощность в цепи переменного тока
- •1. Векторы и скаляры
- •3. Циркуляция и поток вектора .
- •Библиографический список
2.3. Центр масс. Закон сохранения импульса
Под центром масс системы тел понимают
точку в пространстве, положение которой
относительно какой-либо ИСО определяется
радиус-вектором
:
(2.6)
где
–
сумма масс тел (м.т.) системы;
–
радиус-вектор i
- го тела (м.т.) системы.
Если поместить в центр масс тело в виде
материальной точки массой m,
то оно будет двигаться со скоростью
:
а
(2.7)
Производная от
по
времени
(2.8)
Если система является замкнутой, или внешние силы, действующие на нее, компенсируют друг друга, то ее центр масс будет двигаться равномерно и прямолинейно или покоиться.
В замкнутой системе выполняется закон сохранения импульса, согласно которому векторная сумма импульсов тел замкнутой системы остается постоянной:
(2.9)
2.4. Кинетическая энергия. Работа. Мощность
Рассмотрим простейшую систему, состоящую из одной частицы, на которую действует сила . Напишем уравнение движения этой частицы:
(v << c).
Умножив левую и правую части уравнения
на перемещение
,
получим:
или
,
,
(2.10)
где Т – кинетическая
энергия тела,
–
приращение кинетической энергии, а
, (2.11)
работа силы при элементарном
перемещении. Формула
утверждает,
что работа силы идет на приращении
кинетической энергии тела. Если на тело
действует совокупность сил и перемещение
тела осуществляется на конечную величину,
то работа всех сил, действующих на
частицу, идет на приращение кинетической
энергии частицы:
А = Т2 – Т1.
Работу силы за единицу времени называют мощностью. Мгновенная мощность
(2.12)
2.5. Потенциальная энергия
Потенциальной энергией можно характеризовать систему тел только в том случае, если между телами этой системы взаимодействие осуществляется посредством консервативных сил. Силы называют консервативными, если работа этих сил не зависит от формы траектории, по которой перемещается тело, и определяется только начальным и конечным положением тала. Для консервативных сил работ на любом замкнутом пути равна нулю. Консервативными силами являются: силы тяготения, силы упругости, электростатические силы взаимодействия.
Силы, не удовлетворяющие отмеченному выше свойству, называют диссипативными силами. Сила трения – это диссипативная сила.
Назовем определенное расположение тел в пространстве конфигурацией этой системы. Каждой конфигурации соответствует свое значение потенциальной энергии U. Потенциальная энергия определяется с точностью до некоторой произвольной постоянной.
Изменение конфигурации (взаимного расположения тел) приводит к изменению потенциальной энергии системы. Увеличение потенциальной энергии системы можно осуществить только посредством положительной работы внешних сил. Работа же внутренних (консервативных) сил приводит к убыли потенциальной энергии. Работа консервативных сил при бесконечно малом изменении конфигурации является полным дифференциалом функции U:
dA = – dU. (2.13)
Работа консервативных сил при изменения конфигурации системы тел:
А = – ∆U = U1 – U2.
Зная вид функции U(x,y,z),
можно найти силу, действующую на частицу
в каждой точке поля. Рассмотрим перемещение
частицы в произвольном направлении.
Такое перемещение сопровождается
совершением над частицей работы
В
направлении оси х
сила
совершит
работу
.
Согласно (2.13) та же работа может быть
представлена как убыль потенциальной
энергии:
Откуда
Для компонент силы по осям y и z получаются аналогичные выражения. Таким образом,
,
,
Зная компоненты, можно найти вектор силы:
Выражение, стоящее в скобках, обозначим символом
(2.14)
и назовем градиентом потенциальной энергии.
Таким образом
(2.15)
Градиент потенциальной энергии это вектор, модуль который равен консервативной силе, действующей на тело. Этот вектор указывает направление в котором потенциальная энергия увеличивается с наибольшей скоростью.
Можно показать, что в замкнутой консервативной системе полная механическая энергия, состоящая из кинетической и потенциальной энергии, сохраняется:
Е = Т + U = const, (2.16)
т.е. в замкнутой консервативной системе механическая энергия не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой (закон сохранения механической энергии).
Лекция 3