Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты лекций по физике_ Часть 1.doc
Скачиваний:
6
Добавлен:
01.05.2025
Размер:
3.84 Mб
Скачать

7 .2. Применение теоремы Гаусса для расчета электростатических полей

Пример 1. Электрическое поле равномерно заряженной по поверхности бесконечно протяженной плоскости.

Рис. 7.3

1-й этап. Введем поверхностную плотность заряда σ. Для этого на заряженной поверхности вблизи какой-либо ее точки выбирают элементарную площадку площадью dS, содержащую заряд dq, и рассчитывают по формуле

то есть σ представляет собой заряд, приходящийся на единицу поверхности. Если плоскость заряжена равномерно, то тогда во всех ее точках σ будет одинаковой (σ = const), и поэтому поле такой бесконечно протяженной плоскости является однородным – линии представляют прямые, перпендикулярные к ней (рис. 7.3).

2-й этап. Выбираем замкнутую поверхность в виде цилиндра, образующая которого перпендикулярна к плоскости (рис. 7.3). Тогда поток ФЕ через боковую поверхность будет равен нулю (α =900, линии не пересекают боковой поверхности), и поэтому остается поток только через основание площади S1 = S2 = S:

3-й этап. Рассчитаем заряд плоскости, попадающий внутрь цилиндра:

4-й этап. Применяем теорему Гаусса для расчета модуля вектора :

(7.5)

здесь учтен случай отрицательно заряженной плоскости.

Формула (7.5) позволяет провести расчет поля плоского конденсатора как поля двух параллельных плоскостей с равными по модулю и противоположными по знаку поверхностными зарядами (рис. 7.4а).

Рис. 7.4

Используя принцип суперпозиции электростатических полей, можно сделать вывод о том, что поле конденсатора существует между его пластинами (рис. 7.4б), а модуль вектора этого поля

(7.6)

где - модуль заряда одной из пластин конденсатора площадью S. Между обкладками конденсатора вакуум или газ.

Оценим разность потенциалов φ1φ2 (или напряжение U) между обкладками конденсатора, находящимися на расстоянии d друг от друга. Для этого используем формулы (6.5) и (7.6):

(7.7)

Пример 2. Поле равномерно заряженной бесконечно длинной прямолинейной нити.

1-й этап. Введем линейную плотность заряда нити. Для этого на заряженной нити выбираем элемент длины dl, содержащий заряд dq, и рассчитаем τ по формуле

.

Для равномерно заряженной нити во всех ее точках τ будет одинаковой (τ = const), поэтому поле такой нити обладает осевой симметрией: линии представляют собой прямые, выходящие из нити и лежащие в плоскостях, перпендикулярных к ней (рис. 7.5а).

Рис. 7.5

На одинаковых расстояниях от нити, то есть на цилиндрических поверхностях, модуль будет одинаковым.

2-й этап. Выбираем замкнутую поверхность в виде цилиндра, имеющего высоту H и радиус r, ось цилиндра совпадает с нитью. Поток ФЕ через основания цилиндра равен нулю (α =900), поэтому остается поток только через боковую поверхность:

3-й этап. Рассчитаем заряд отрезка нити длины H, попадающий внутрь цилиндра:

4-й этап. Применяем теорему Гаусса для расчета модуля вектора :

(7.8)

Формула (7.8) позволяет оценить разность потенциалов между двумя точками, находящимися на расстояниях r1 и r2 от нити (рис. 7.5а):

(7.9)