Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты лекций по физике_ Часть 1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.84 Mб
Скачать

6.2. Потенциальная энергия. Потенциал. Работа сил электрического поля

Взаимодействие между неподвижными зарядами осуществляется посредством электростатического поля: взаимодействуют не заряды, а один заряд в месте своего расположения взаимодействует с полем, созданным другим зарядом.

Покажем, что электростатическое поле является потенциальным. Для этого рассчитаем работу кулоновской силы при перемещении точечного положительного заряда q2 из точки 1 в точку 2 (рис. 6.1б) в электрическом поле, созданным точечным зарядом q1:

(6.2)

Как видно из формулы (6.2), в окончательное выражение входят величины, описывающие только начальное и конечное положение заряда q2, то есть работа сил поля не зависит от пути перехода из точки 1 в точку 2. Это означает, что кулоновская сила будет консервативной, а электрическое поле – потенциальное. В таком поле заряд q , помещенный в некоторую точку, обладает потенциальной энергией U.

На основании формулы (6.2) для U можно записать следующее выражение:

(6.2а)

Как видно из выражения (6.2а), U определяется с точностью до постоянной величины. Для электростатического поля точечного заряда принято выбирать const так, чтобы на бесконечно большом расстоянии между зарядами их взаимная потенциальная энергия обращалась в ноль. Следовательно,

(6.2б)

Из формулы (6.2б) видно, что отношение потенциальной энергии U заряда q к его величине не зависит от q и поэтому может служить энергетической характеристикой электростатического поля. Отношение U/q обозначается через φ и называется потенциалом электрического поля:

(6.3)

где ri – расстояние от точки поля, обладающего потенциалом φi, до заряда q, создающего поле.

Работу, совершенную электрическими силами при перемещении произвольного по величине заряда q можно выразить через разность потенциалов φ1 и φ2 в точках 1 и 2:

(6.4)

6.3. Напряженность поля. Принцип суперпозиции полей

Количественной характеристикой силового действия электрического поля на заряженные частицы и тела служит векторная величина , называемая напряженностью электрического поля. Она равна отношению силы , действующей со стороны поля на точечный «пробный» электрический заряд, помещенный в рассматриваемую точку поля, к величине q0 этого заряда:

(6.5)

Понятие «пробный заряд» означает, что заряд q0 не только сам не участвует в создании электрического поля, напряженность которого с его помощью определяется, но и столь мал, что своим присутствием не вызывает перераспределения в пространстве зарядов, создающих исследуемое поле.

Сила , действующая со стороны электрического поля на произвольный по величине точечный заряд q, помещенный в это поле

(6.6)

Выражение для напряженности поля точечного электрического заряда q запишем в виде

(6.7)

Для расчета и φ, созданного системой зарядов, используют принцип суперпозиции. Он заключается в следующем: вектор напряженности (потенциал φ) электрического поля, созданного несколькими зарядами, равен векторной сумме напряженностей (алгебраической сумме потенциалов)полей, созданных каждым зарядом в отдельности:

; φ = φ1 + φ2 + … (6.8)