
- •Тема 1. Вероятностные пространства 30
- •Тема 2. Основные вероятностные схемы испытаний 60
- •Тема 3. Случайные величины 87
- •Тема 4. Математическая статистика 140
- •Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- •Особенности изучения теории вероятностей и математической статистики менеджером
- •Краткие сведения
- •Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- •Основные понятия теории вероятностей
- •Случайные события
- •Понятие случайного эксперимента
- •Пространство элементарных событий
- •Наступление события, благоприятствующие исходы
- •Совместные (совместимые), несовместные (несовместимые) события
- •Достоверное и невозможное события
- •Алгебра событий Операции над событиями (сумма, разность, произведение)
- •Свойства операций над событиями
- •Алгебра и сигма-алгебра событий
- •Общее определение вероятности
- •Классическое определение вероятности события. Случаи равновероятных исходов
- •Статистическое определение вероятности события. Случаи неравновероятных исходов
- •Геометрические вероятности
- •Аксиоматическое построение теории вероятностей
- •, Т.Е. Вероятность достоверного события равна единице;
- •Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- •Полная группа событий
- •Условная вероятность
- •Формула умножения вероятностей
- •Формула сложения вероятностей
- •Независимость событий
- •Простейшие свойства вероятностей
- •Свойства условных вероятностей
- •Формула полной вероятности. Формула Байеса
- •Контрольные вопросы к теме №1
- •Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- •Классическая вероятностная схема
- •Правила суммы и произведения
- •Схемы выбора. Основные понятия комбинаторики
- •Выбор без возвращения, с учетом порядка
- •Выбор без возвращения, без учета порядка
- •Выбор с возвращением и с учетом порядка
- •Выбор с возвращением и без учета порядка
- •Урновая схема
- •Наивероятнейшее число наступления событий в схеме Бернулли
- •Предельные теоремы для схемы Бернулли
- •Локальная теорема Муавра–Лапласа
- •Интегральная теорема Муавра – Лапласа
- •Теорема Пуассона
- •Понятие потока событий
- •Полиномиальная схема
- •Понятие цепи Маркова
- •Однородные цепи Маркова
- •Равенство Маркова
- •Предельные вероятности
- •Контрольные вопросы к теме №2
- •Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- •Непрерывные и дискретные случайные величины
- •Закон распределения случайной величины
- •Функция распределения случайной величины и ее свойства
- •Свойства функции распределения
- •Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- •Свойства математического ожидания
- •Дисперсия случайной величины и ее свойства
- •Среднеквадратическое отклонение
- •Начальные и центральные моменты
- •Основные примеры распределений дискретной случайной величины
- •Биномиальное распределение, его математическое ожидание, дисперсия
- •Распределение Пуассона
- •Геометрическое распределение
- •Непрерывные случайные величины Функция и плотность распределения вероятностей
- •Числовые характеристики непрерывных случайных величин
- •Основные примеры распределений непрерывной случайной величины Равномерное распределение
- •Показательное распределение
- •Нормальное распределение
- •Свойства функции Гаусса
- •Центральная предельная теорема
- •Вероятность попадания нормальной случайной величины в заданный интервал
- •Функция Лапласа и ее свойства
- •Вычисление вероятности заданного отклонения. Правило «трех сигм»
- •Лекция 4. Многомерные случайные величины
- •Закон распределения вероятностей двумерной случайной величины
- •Совместная функция распределения двумерной случайной величины
- •Свойства совместной функции распределения двумерной случайной величины
- •Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- •Свойства двумерной плотности вероятности
- •Условное математическое ожидание
- •Независимые случайные величины
- •Числовые характеристики системы двух случайных величин
- •Корреляционный момент
- •Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Линейная регрессия. Метод наименьших квадратов
- •Распределение 2
- •Распределение Стьюдента
- •Распределение Фишера
- •Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- •Контрольные вопросы к теме №3
- •Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- •Выборочный метод и его основные понятия
- •Способы отбора
- •Вариационный ряд для дискретных и непрерывных случайных величин
- •Полигон и гистограмма
- •Эмпирическая функция распределения и ее свойства
- •Свойства эмпирической функции распределения
- •Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- •Выборочные среднее и дисперсия
- •Надежность и доверительный интервал
- •Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- •Проверка статистических гипотез
- •Статистический критерий
- •Критическая область. Область принятия гипотезы. Критические точки
- •Критерий согласия Пирсона о виде распределения
- •Элементы теории корреляции
- •Выборочные уравнения регрессии
- •Линейная регрессия
- •Множественная линейная регрессия
- •Нелинейная регрессия
- •Логарифмическая модель
- •Обратная модель
- •Степенная модель
- •Показательная модель
- •Цепи Маркова Цепи Маркова с дискретным временем
- •Однородные цепи Маркова
- •Переходные вероятности. Матрица перехода
- •Равенство Маркова
- •Цепи Маркова с непрерывным временем
- •Уравнения Колмогорова
- •Финальные вероятности состояний системы
- •Предельные вероятности
- •Контрольные вопросы к теме №4
- •Экзаменационные вопросы
- •Литература
- •Теория вероятностей и математическая статистика Курс лекций
- •220007, Г. Минск, ул. Московская, 17.
Дисперсия случайной величины и ее свойства
На
практике часто требуется оценить
рассеяние случайной величины вокруг
ее среднего значения. Использовать в
качестве такой характеристики отклонение
случайной величины
от ее математического ожидания
не представляется возможным.
Теорема. Для любой случайной величины математическое ожидание ее отклонения равно нулю, т.е.
.
Доказательство. Действительно, учитывая, что – постоянная величина, имеем:
Такой характеристикой степени рассеяния случайной величины является дисперсия.
Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения этой величины от ее математического ожидания:
.
Очевидно, что дисперсия случайной величины постоянна, т.е. является числовой характеристикой этой величины.
Если
случайная величина имеет закон
распределения
,
то
.
Так же как и для математического ожидания, свойства дисперсии можно сформулировать в виде теорем.
Теорема. Дисперсия постоянной величины равна нулю.
Доказательство.
Если
– постоянная величина, то
и, следовательно,
.
Этот результат очевиден, поскольку
постоянная величина изображается точкой
на числовой оси и не имеет рассеяния.
Теорема.
Постоянный множитель можно выносить
за знак дисперсии, возводя его при этом
в квадрат
.
Доказательство.
Если
– постоянный множитель, а
– случайная величина, то
–
тоже случайная величина, математическое
ожидание которой
.
Применяя к случайной величине
определение дисперсии, получаем:
.
Теорема.
Дисперсия случайной величины равна
разности математического ожидания ее
квадрата и квадрата математического
ожидания самой величины:
.
Доказательство. Используя основные теоремы о математическом ожидании можно записать:
Теорема. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
.
Доказательство.
Поскольку
,
следовательно:
,
где
– так называемый корреляционный
момент величин
и
.
Если случайные величины
и
независимы, то случайные величины
и
,
очевидно, также независимы, поэтому:
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин.
Следствие
2. Если
– постоянная величина, то
.
Следствие
3. Дисперсия разности двух независимых
случайных величин равна сумме дисперсий
этих величин, т.е. если случайные величины
и
независимы, то
.
Доказательство.
.
Математическое ожидание и дисперсия случайной величины являются ее основными числовыми характеристиками.
Среднеквадратическое отклонение
Для оценки рассеяния возможных значений случайной величины вокруг его среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратичное отклонение.
Средним
квадратичным отклонением
(или стандартом) случайной величины
называется корень квадратный из дисперсии
этой величины:
.
Пример. Пусть закон распределения случайной величины задан таблицей:
|
4 |
10 |
20 |
|
0.25 |
0.5 |
0.25 |
Определить
математическое ожидание
,
дисперсию
и среднее квадратичное отклонение
.
Решение:
.
Легко показать, что дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение равно квадратному корню из дисперсии, то размерность совпадает с размерностью . Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратичное отклонение, а не дисперсию.